共查询到20条相似文献,搜索用时 10 毫秒
1.
Wang Y Cai J Rauscher H Behm RJ Goedel WA 《Chemistry (Weinheim an der Bergstrasse, Germany)》2005,11(13):3968-3978
Four approaches have been explored for the preparation of maleimido-functionalized self-assembled monolayers (SAMs) on silicon. SAMs prepared by self-assembly of maleimido-functionalized alkyltrichlorosilanes (11-maleimido-undecyl-trichlorosilane) on oxide-covered silicon yield higher signals from maleimido functionalities in ATR-IR (attenuated total reflection IR) spectroscopy and XPS (X-ray photoelectron spectroscopy) than the other three methods. The surface composition of maleimido groups was tailored further by the formation of mixed monolayers with nonfunctionalized alkyltrichlorosilanes (decyltrichlorosilane). The order of the alkyl chains within the monolayers only slightly depends on the composition of the mixed monolayers. We utilized the maleimido-terminated SAMs to bind various nucleophilic compounds, alkylamines, alkylthiols, and thiol-tagged DNA oligonucleotides by means of conjugate addition. 相似文献
2.
3.
Onclin S Ravoo BJ Reinhoudt DN 《Angewandte Chemie (International ed. in English)》2005,44(39):6282-6304
Although a molecular monolayer is only a few nanometers thick it can completely change the properties of a surface. Molecular monolayers can be readily prepared using the Langmuir-Blodgett methodology or by chemisorption on metal and oxide surfaces. This Review focuses on the use of chemisorbed self-assembled monolayers (SAMs) as a platform for the functionalization of silicon oxide surfaces. The controlled organization of molecules and molecular assemblies on silicon oxide will have a prominent place in "bottom-up" nanofabrication, which could revolutionize fields such as nanoelectronics and biotechnology in the near future. In recent years, self-assembled monolayers on silicon oxide have reached a high level of sophistication and have been combined with various lithographic patterning methods to develop new nanofabrication protocols and biological arrays. Nanoscale control over surface properties is of paramount importance to advance from 2D patterning to 3D fabrication. 相似文献
4.
5.
6.
7.
8.
Auer F Nelles G Sellergren B 《Chemistry (Weinheim an der Bergstrasse, Germany)》2004,10(13):3232-3240
The reversible self-assembly of a series of bipolar amphiphiles, alpha,omega-bis(3- or 4-amidinophenoxy)alkanes (chain length n = 5-12), on mercaptoalkanoic acid-functionalized gold surfaces (chain length n = 10, 11, 14, 15) has been studied by in-situ ellipsometry, IR reflection absorption spectroscopy (IRAS), and atomic force microscopy (AFM). The layer order, amphiphile orientation, and tendency to form bilayers depends on the position of the amidine substituent, the alkyl chain length of both the amidine amphiphile and the underlying acid self-assembled monolayer (SAM), and whether the amidine alkyl chain contained an even or odd number of methylene groups. Thus, para-substituted bisbenzamidines containing more than six methylene groups (n>6) and with an odd number (n = 7, 9, 11) tended to form bilayered structures, whereas those containing an even number formed monolayers when adsorbed on SAMs of the long-chain acids (n = 14, 15). This behavior also correlated with the average tilt angle of the benzene moieties of the amphiphiles, as estimated by IRAS. The odd-numbered chains gave lower tilt angles than the even-numbered ones, and a possible model that accounts for these results is proposed. IRAS also revealed a higher order of the odd-numbered chains and an increasing hydrogen-bonding contribution with increasing chain length. Additional evidence for the proposed bilayered assemblies and their reversibility was obtained by AFM. Images obtained from the assembly of decamidine on a SAM of mercaptohexadecanoic acid in a pH 9 borate buffer revealed domains of similar size to that of the underlying acid SAM (20-30 nm), but less densely packed. By acidifying the solution, the second layer was destabilized and a very smooth layer with few defects appeared. Further acidification to pH 3 also destabilized the first layer. 相似文献
9.
Zaupa G Mora C Bonomi R Prins LJ Scrimin P 《Chemistry (Weinheim an der Bergstrasse, Germany)》2011,17(17):4879-4889
The catalytic activity of a series of Au monolayer protected colloids (Au MPCs) containing different ratios of the catalytic unit triazacyclononane?ZnII (TACN?ZnII) and an inert triethyleneglycol (TEG) unit was measured. The catalytic self‐assembled monolayers (SAMs) are highly efficient in the transphosphorylation of 2‐hydroxy propyl 4‐nitrophenyl phosphate (HPNPP), an RNA model substrate, exhibiting maximum values for the Michaelis–Menten parameters kcat and KM of 6.7×10?3 s?1 and 3.1×10?4 M , respectively, normalized per catalytic unit. Despite the structural simplicity of the catalytic units, this renders these nanoparticles among the most active catalysts known for this substrate. Both kcat and KM parameters were determined as a function of the mole fraction of catalytic unit (x 1 ) in the SAM. Within this nanoparticle (NP) series, kcat increases up till x 1 ≈0.4, after which it remains constant and KM decreases exponentially over the range studied. A theoretical analysis demonstrated that these trends are an intrinsic property of catalytic SAMs, in which catalysis originates from the cooperative effect between two neighboring catalytic units. The multivalency of the system causes an increase of the number of potential dimeric catalytic sites composed of two catalytic units as a function of the x 1 , which causes an apparent increase in binding affinity (decrease in KM). Simultaneously, the kcat value is determined by the number of substrate molecules bound at saturation. For values of x 1 > 0.4, isolated catalytic units are no longer present and all catalytic units are involved in catalysis at saturation. Importantly, the observed trends are indicative of a random distribution of the thiols in the SAM. As indicated by the theoretical analysis, and confirmed by a control experiment, in case of clustering both kcat and KM values remain constant over the entire range of x 1 . 相似文献
10.
Chen Y Jin B Guo LR Yang XJ Chen W Gu G Zheng LM Xia XH 《Chemistry (Weinheim an der Bergstrasse, Germany)》2008,14(34):10727-10734
Phosphonic acid (--PO(3)H(2)) terminated self-assembled monolayers (SAMs) on a gold surface were used as a functional interface to immobilize hemoglobin (Hb). In situ surface-enhanced infrared absorption spectroscopy (SEIRAS) measurements show that Hb immobilization is a sluggish process due to formation of multilayer Hb structures on the PO(3)H(2)-terminated SAMs, as revealed by ellipsometry, atomic force microscopy (AFM), and cyclic voltammetry (CV). In the multilayered Hb film, the innermost Hb molecules can directly exchange electrons with the electrode, whereas Hb beyond this layer communicates electronically with the electrode via protein-protein electron exchange. In addition, electrochemical measurements indicate that immobilization of Hb on the PO(3)H(2)-terminated SAMs is not driven by the electrostatic interaction, but likely by hydrogen-bonding interaction. The immobilized Hb molecules show excellent bioelectrocatalytic activity towards hydrogen peroxide, that is, the PO(3)H(2)-terminated SAMs are promising for construction of third-generation biosensors. 相似文献
11.
Xiaoquan Lu Limin Zhang Minrui Li Xiaoqiang Wang Yan Zhang Xiuhui Liu Guofang Zuo 《Chemphyschem》2006,7(4):854-862
Herein, the scanning electrochemical microscopy (SECM) approach is applied to study the formation of thiol-porphyrin self-assembled monolayer (SAMs). Using cyclic voltammetry (CV), the formation process is characterized adopting different probe molecules. The observed phenomena indicate that the formation process is affected by solution properties and the molecular structure of the probe molecules. In K(3)Fe(CN)(6) , the SAMs show a strong electron-transfer (ET) blocking effect on a pure porphyrin-modified electrode. However, addition of metal ions to the porphyrin molecules leads to ET. A consistent tendency is observed throughout the modification process using CV and SECM methods. Furthermore, k(eff) values, the apparent heterogeneous rate constants, obtained for different modification periods affirm the validity of these results. SECM images are used to collect surface information in the course of the modification process when the substrate potential is 0.5 V versus Ag/AgCl. The effect of the substrate potential indicates that the oxidation of the porphyrin molecules is supported by more positive potentials because of the similar bimolecular reaction of the porphyrin ring with positive charge and the probe molecules with negative charge. 相似文献
12.
13.
Hsiang‐Wei Lu Jennifer L. Logan A. E. Hosoi Shenda M. Baker 《Journal of Polymer Science.Polymer Physics》2011,49(2):136-143
Spreading amphiphilic diblock copolymers on a two‐dimensional liquid interface has been observed to produce nanoscale features via self‐assembly. Here, we develop a model that incorporates the effects of polymer entanglement and surface diffusion in polymer blends to quantitatively predict the size of experimentally observed structures. Simulations show that different polymers in the blend cooperate to self‐assemble into nanoscale features of varying sizes. Characteristic nanoscopic dimensions can be tuned by adjusting two easily controllable macroscopic quantities: the blend composition and the initial surface concentration. Theoretical predictions are in agreement with experimentally measured feature dimensions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011 相似文献
14.
15.
16.
17.
18.
19.
Wagner H Brinks MK Hirtz M Schäfer A Chi L Studer A 《Chemistry (Weinheim an der Bergstrasse, Germany)》2011,17(33):9107-9112
This article describes the application of nitroxide exchange reactions of surface-bound alkoxyamines as a tool for reversible chemical modification of self-assembled monolayers (SAMs). This approach is based on radical chemistry, which allows for introduction of various functional groups and can be used to reversibly introduce functionalities at surfaces. To investigate the scope of this surface chemistry, alkoxyamines with different functionalities were synthesized and were then applied to the immobilization of, for example, dyes, sugars, or biotin. Surface analysis was carried out by contact angle, X-ray photoelectron spectroscopy, and fluorescence microscopy measurements. The results show that this reaction is highly efficient, reversible, and mild and allows for immobilization of various sensitive functional groups. In addition, Langmuir-Blodgett lithography was used to generate structured SAMs. Site-selective immobilization of a fluorescent dye could be achieved by nitroxide exchange reactions. 相似文献