首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 185 毫秒
1.
The two dimensional impinging circular twin-jet flow with no-cross flow is studied numerically and experimentally. The theoretical predications are carried out through numerical procedure based on finite volume method to solve the governing mass, momentum, turbulent kinetic energy and turbulent kinetic energy dissipation rate. The parameters studied were jet Reynolds number (9.5 × 104  Re  22.4 × 104), nozzle to plate spacing (3  h/d  12), nozzle to nozzle centerline spacing (l/d = 3, 5 and 8) and jet angle (0°  θ  20°). It is concluded that the stagnation primary point moves away in the radial main flow direction by increasing the jet angle. This shift becomes stronger by increasing the nozzle to nozzle centerline spacing (l/d). A secondary stagnation point is set up between two jets. The value of pressure at this point decreases by decreasing Reynolds number and/or increasing the jet angle.

The sub atmospheric region occurs on the impingement plate. It increases strongly by increasing Reynolds number and decreases as the jet angle and/or a nozzle to plate spacing increases. The spreading of jet decreases by increasing nozzle to plate spacing. The intensity of re-circulation zone between two jets decreases by increasing of h/d and jet angle. The increase of turbulence kinetic energy occurs within high gradient velocity.  相似文献   


2.
An immersed-boundary method was employed to perform a direct numerical simulation (DNS) of flow around a wall-mounted cube in a fully developed turbulent channel for a Reynolds number Re = 5610, based on the bulk velocity and the channel height. Instantaneous results of the DNS of a plain channel flow were used as a fully developed inflow condition for the main channel. The results confirm the unsteadiness of the considered flow caused by the unstable interaction of a horseshoe vortex formed in front of the cube and on both its sides with an arch-type vortex behind the cube. The time-averaged data of the turbulence mean-square intensities, Reynolds shear stresses, kinetic energy and dissipation rate are presented. The negative turbulence production is predicted in the region in front of the cube where the main horseshoe vortex originates.  相似文献   

3.
To investigate the relationship between characteristics of the coherent fine scale eddy and a laminar–turbulent transition, a direct numerical simulation (DNS) of a spatially-developing turbulent mixing layer with Reω,0 = 700 was conducted. On the onset of the transition, strong coherent fine scale eddies appears in the mixing layer. The most expected value of maximum azimuthal velocity of the eddy is 2.0 times Kolmogorov velocity (uk), and decreases to 1.2uk, which is an asymptotic value in the fully-developed state, through the transition. The energy dissipation rate around the eddy is twice as high compared with that in the fully-developed state. However, the most expected diameter and eigenvalues ratio of strain rate acting on the coherent fine scale eddy are maintained to be 8 times Kolmogorov length (η) and :β:γ = −5:1:4 in the transition process. In addition to Kelvin–Helmholtz rollers, rib structures do not disappear in the transition process and are composed of lots of coherent fine scale eddies in the fully-developed state instead of a single eddy observed in early stage of the transition or in laminar flow.  相似文献   

4.
The statistical behaviour of turbulent kinetic energy transport in turbulent premixed flames is analysed using data from three-dimensional Direct Numerical Simulation (DNS) of freely propagating turbulent premixed flames under decaying turbulence. For flames within the corrugated flamelets regime, it is observed that turbulent kinetic energy is generated within the flame brush. By contrast, for flames within the thin reaction zones regime it has been found that the turbulent kinetic energy decays monotonically through the flame brush. Similar trends are observed also for the dissipation rate of turbulent kinetic energy. Within the corrugated flamelets regime, it is demonstrated that the effects of the mean pressure gradient and pressure dilatation within the flame are sufficient to overcome the effects of viscous dissipation and are responsible for the observed augmentation of turbulent kinetic energy in the flame brush. In the thin reaction zones regime, the effects of the mean pressure gradient and pressure dilatation terms are relatively much weaker than those of viscous dissipation, resulting in a monotonic decay of turbulent kinetic energy across the flame brush. The modelling of the various unclosed terms of the turbulent kinetic energy transport equation has been analysed in detail. The predictions of existing models are compared with corresponding quantities extracted from DNS data. Based on this a-priori DNS assessment, either appropriate models are identified or new models are proposed where necessary. It is shown that the turbulent flux of turbulent kinetic energy exhibits counter-gradient (gradient) transport wherever the turbulent scalar flux is counter-gradient (gradient) in nature. A new model has been proposed for the turbulent flux of turbulent kinetic energy, and is found to capture the qualitative and quantitative behaviour obtained from DNS data for both the corrugated flamelets and thin reaction zones regimes without the need to adjust any of the model constants.  相似文献   

5.
A SIMPLE-C algorithm and Jones-Launder k-ε two-equation turbulence model are used to simulate a two-dimensional jet impinging obliquely on a flat surface. Both the continuity and momentum equations for the unsteady state are cast into suitable finite difference equations. The pressure, velocity, turbulent kinetic energy and turbulent energy dissipation rate distributions are solved and show good agreement with various experimental data. The calculations show that the flow field structure of the jet impinging obliquely on a flat surface is strongly affected by the oblique impingement angle. The maximum pressure zone of the obliquely impinging jet flow field moves towards the left as the oblique impingement angle is decreased.  相似文献   

6.
Mesoscale chemical reactors capable of operating in the turbulent flow regime, such as confined impinging jets reactors (CIJR), offer many advantages for rapid chemical processing at the microscale. One application where these reactors are used is flash nanoprecipitation, a method for producing functional nanoparticles. Because these reactors often operate in a flow regime just beyond transition to turbulence, modeling flows in these reactors can be problematic. Moreover, validation of computational fluid dynamics models requires detailed and accurate experimental data, the availability of which has been very limited for turbulent microscale flows. In this work, microscopic particle image velocimetry (microPIV) was performed in a mesoscale CIJR at inlet jet Reynolds numbers of 200, 1,000, and 1,500. Pointwise and spacial turbulence statistics were calculated from the microPIV data. The flow was observed to be laminar and steady in the entire reactor at a Reynolds number of 200. However, at jets Reynolds numbers of 1,000 and 1,500, instabilities as a result of the jets impinging along the centerline of the reactor lead to a highly turbulent impingement region. The peak magnitude of the normalized Reynolds normal and shear stresses within this region were approximately the same for the Reynolds numbers of 1,000 and 1,500. The Reynolds shear stress was found to exhibit a butterfly shape, consistent with a flow field dominated by an oblique rocking of the impingement zone about the center of the reactor. Finally, the spatial auto- and cross-correlations velocity fluctuations were calculated and analyzed to obtain an understanding of size of the coherent structures.  相似文献   

7.
A new turbulent injection procedure dedicated to fully compressible direct numerical simulation (DNS) or large eddy simulation (LES) solvers is proposed. To avoid the appearance of spurious acoustic waves, this method is based on an accurate tracking of the turbulent structures crossing the boundary at the inlet of the domain. A finite difference DNS solver has been coupled with a spectral simulation in which a statistically stationary homogeneous turbulence evolves to provide fluctuating boundary conditions.A new turbulence forcing method, dedicated to spectral solvers, has been developed as well to control the major properties of the injected flow (turbulent kinetic energy, dissipation rate and integral length scale). One-dimensional Navier–Stokes characteristic boundary conditions extended to non-stationary flows are coupled with the injection procedure to evaluate is potential in four various configurations: spatially decaying turbulence, dispersion of vaporizing sprays, propagation of one- and two-phase V-shape turbulent flames.  相似文献   

8.
We consider the chemical reaction in a turbulent flow for the case that the time scale of turbulence and the time scale of the reaction are comparable. This process is complicated by the fact that the reaction takes place intermittently at those locations where the species are adequately mixed. This is known as spatial segregation. Several turbulence models have been proposed to take the effect of spatial segregation into account. Examples are the probability density function (PDF) and the conditional moment closure (CMC) models. The main advantage of these models is that they are able to parameterize the effects of turbulent mixing on the chemical reaction rate. As a price several new unknown terms appear in these models for which closure hypothesis must be supplied. Examples are the conditional dissipation 〈 χ ∣ φ 〉, the conditional diffusion 〈 κ ∇2 φ ∣ u, φ 〉 and the conditional velocity 〈 u ∣ φ 〉. In the present study we investigate these unknown terms that appear in the PDF and CMC model by means of a direct numerical simulation (DNS) of a fully developed turbulent flow in a channel geometry. We present the results of two simulations in which a scalar is released from a continuous line source. In the first we consider turbulent mixing without chemical reaction and in the second we add a binary reaction. The results of our simulations agree very well with experimental data for the quantities on which information is available. Several closure hypotheses that have been proposed in the literature, are considered and validated with help of our simulation results. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
根据直接数值模拟的计算结果,对竖直平板间湍流自然对流的脉动动能、速度及温度等物理量的时间序列进行频谱分析.结果表明,流动达到充分发展状态后,小尺度到大尺度的能谱很宽,计算的分辨率足够.从能谱分布可以观察到含能区、惯性子区和耗散区的存在,文中对各区的特性进行分析.由于该流动的强各向异性,惯性子区很窄.并讨论了法向位置对脉动动能的影响以及大尺度结构的特性.  相似文献   

10.
11.
A compressible supersonic mixing layer at convective Mach number (Mc) equal to 1 has been studied experimentally in a dual stream supersonic/subsonic wind-tunnel. Laser Doppler Velocimetry (L.D.V.) measurements were performed making possible a full estimation of the mean and turbulent 3D velocity fields in the mixing layer. The Reynolds stress tensor was described. In particular, some anisotropy coefficients were obtained. It appears that the structure of the Reynolds tensor is almost not affected by compressibility at least up to Mc = 1.The turbulent kinetic energy budget was also experimentally estimated. Reynolds analogies assumptions were used to obtain density/velocity correlations in order to build the turbulent kinetic energy budget from LDV measurements. Results have been compared to other experimental and numerical results. Compressibility effects on the turbulent kinetic energy budget have been detected and commented. A study about thermodynamics flow properties was also performed using most recent DNS results experimentally validated by the present data. A non-dimensional number is then introduced in order to quantify the real effect of pressure fluctuations on the thermodynamics quantities fluctuations.  相似文献   

12.
We develop an explicit algebraic Reynolds stress model (EARSM) for high-speed compressible shear flows and validate the model with direct numerical simulation (DNS) data of homogeneous shear flow and experimental data of high-speed mixing-layers. Starting from a pressure–strain correlation model that incorporates compressibility effects, the weak-equilibrium assumption is invoked to derive the EARSM closure expression. The resulting closure is fully explicit and physically realizable and is a function of mean flow strain rate, rotation rate, turbulent kinetic energy, dissipation rate, and gradient Mach number. Homogeneous shear flow calculations show that the model captures the asymptotic behavior of DNS quite well. Linear EARSM calculations of a plane supersonic mixing-layer are performed, and comparison with experimental data shows good agreement. Salient results are agreement of streamwise velocity similarity profiles, mixing-layer spreading rates, and capturing the Langley curve trend.  相似文献   

13.
In this study, a two‐scale low‐Reynolds number turbulence model is proposed. The Kolmogorov turbulence time scale, based on fluid kinematic viscosity and the dissipation rate of turbulent kinetic energy (ν, ε), is adopted to address the viscous effects and the rapid increasing of dissipation rate in the near‐wall region. As a wall is approached, the turbulence time scale transits smoothly from a turbulent kinetic energy based (k, ε) scale to a (ν, ε) scale. The damping functions of the low‐Reynolds number models can thus be simplified and the near‐wall turbulence characteristics, such as the ε distribution, are correctly reproduced. The proposed two‐scale low‐Reynolds number turbulence model is first examined in detail by predicting a two‐dimensional channel flow, and then it is applied to predict a backward‐facing step flow. Numerical results are compared with the direct numerical simulation (DNS) budgets, experimental data and the model results of Chien, and Lam and Bremhorst respectively. It is proved that the proposed two‐scale model indeed improves the predictions of the turbulent flows considered. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
The interaction of a planar shock wave with a triangle-shaped sulfur hexafluoride (\(\mathrm{SF_6}\)) cylinder surrounded by air is numerically studied using a high resolution finite volume method with minimum dispersion and controllable dissipation reconstruction. The vortex dynamics of the Richtmyer–Meshkov instability and the turbulent mixing induced by the Kelvin–Helmholtz instability are discussed. A modified reconstruction model is proposed to predict the circulation for the shock triangular gas–cylinder interaction flow. Several typical stages leading the shock-driven inhomogeneity flow to turbulent mixing transition are demonstrated. Both the decoupled length scales and the broadened inertial range of the turbulent kinetic energy spectrum in late time manifest the turbulent mixing transition for the present case. The analysis of variable-density energy transfer indicates that the flow structures with high wavenumbers inside the Kelvin–Helmholtz vortices can gain energy from the mean flow in total. Consequently, small scale flow structures are generated therein by means of nonlinear interactions. Furthermore, the occasional “pairing” between a vortex and its neighboring vortex will trigger the merging process of vortices and, finally, create a large turbulent mixing zone.  相似文献   

15.
Turbulent kinetic energy (TKE) budget measurements were conducted for a symmetric turbulent planar wake flow subjected to constant zero, favorable, and adverse pressure gradients. The purpose of this study is to clarify the flow physics issues underlying the demonstrated influence of pressure gradient on wake development, and provide experimental support for turbulence modeling. To ensure the reliability of these notoriously difficult measurements, the experimental procedure was carefully designed on the basis of an uncertainty analysis. Three different approaches were applied for the estimate of the dissipation term. An approach for the determination of the pressure diffusion term together with correction of the bias error associated with the dissipation estimate is proposed and validated with the DNS results of Moser et al (J Fluid Mech (1998) 367:255–289). This paper presents the results of the turbulent kinetic energy budget measurement and discusses their implications for the development of strained turbulent wakes.An erratum to this article can be found at  相似文献   

16.
To investigate the effectiveness of the Karhunen–Loeve (K–L) method as a data reduction approach, we study here its effect on the velocity and conformation statistics in a drag reducing turbulent polymer flow. The K–L method has been used to construct a set of basis velocity eigenfunctions from a large number of independent realizations of the velocity. Those were obtained from direct numerical simulation (DNS) of a viscoelastic turbulent channel flow using the Giesekus model. A subset of the K–L eigenfunctions, large enough to contain more than 90% of the fluctuating kinetic energy of the flow on the average, has then been subsequently used to obtain time series of projection coefficients of the velocity fields generated further from DNS. In a post-processing step, velocity fields were reconstructed using selected subsets of the projection coefficients. Those reconstructed velocity fields were then used to evaluate turbulent statistics as well as to integrate the constitutive equation. The turbulent statistics (r.m.s. velocities, Reynolds stress etc.) thus constructed showed good agreement with the full results from DNS. The Reynolds stress anisotropy was also calculated in this work for the first time. It was found to increase with viscoelasticity that was well reproduced in the reduced K–L data except near the channel centerline where the K–L data showed some loss of anisotropy. The biggest differences however between the K–L reduced data and the full DNS results were seen in the conformation statistics. The average polymer conformation extracted from the K–L reduced data was significantly less than that corresponding to the full DNS results anywhere except in the shear-dominated wall region. A further comparison of the energy and dissipation spectra between the full DNS and the K–L reconstructed data illustrated the impact of the K–L process in resulting to a significant damping of small turbulent scales even those contributing to the maximum in turbulent dissipation. This may also be the principal reason behind the poor quality of the K–L reconstructed conformation data.  相似文献   

17.
Turbulent mixing of a passive scalar in fully developed turbulent pipe flow has been investigated by means of a Direct Numerical Simulation (DNS). The scalar is released from a point source located on the centreline of the pipe. The domain size of the concentration field has been chosen large enough to capture the different stages of turbulent mixing. Results are presented for mean concentration profiles, turbulent fluxes, concentration fluctuations, probability density functions and higher-order moments. To validate the numerical simulations the results are compared with experimental data on mixing in grid-turbulence that have been reported in the literature. The agreement between the experimental measurements and the computations is satisfactory. We have also considered the Probability Density Function (PDF). For small diffusion times and positions not on the plume centreline, our results lead to a PDF of an exponential form with a large peak at zero concentration. When the diffusion time increases, the PDF shifts from a exponential to a more Gaussian form.  相似文献   

18.
Direct numerical simulation of compressible turbulent flows   总被引:3,自引:0,他引:3       下载免费PDF全文
This paper reviews the authors' recent studies on compressible turbulence by using direct numerical simulation (DNS),including DNS of isotropic(decaying) turbulence, turbulent mixing-layer,turbulent boundary-layer and shock/boundary-layer interaction.Turbulence statistics, compressibility effects,turbulent kinetic energy budget and coherent structures are studied based on the DNS data.The mechanism of sound source in turbulent flows is also analyzed. It shows that DNS is a powerful tool for the mechanistic study of compressible turbulence.  相似文献   

19.
Handler, Hendricks and Leighton have recently reported results for the direct numerical simulation (DNS) of a turbulent channel flow at moderate Reynolds number. These data are used to evaluate the terms in the exact and modelled transport equations for the turbulence kinetic energy k and the isotropic dissipation function ε. Both modelled transport equations show significant imbalances in the high-shear region near the channel walls. The model for the eddy viscosity is found to yield distributions for the production terms which do not agree well with the distributions calculated from the DNS data. The source of the imbalance is attributed to the wall-damping function required in eddy viscosity models for turbulent flows near walls. Several models for the damping function are examined, and it is found that the models do not vary across the channel as does the damping when evaluated from the DNS data. The Lam-Bremhorst model and the standard van Driest model are found to give reasonable agreement with the DNS data. Modification of the van Driest model to include an effective origin yields very good agreement between the modelled production and the production calculated from the DNS data, and the imbalance in the modelled transport equations is significantly reduced.  相似文献   

20.
高超飞行器在中低空以极高马赫数飞行时,飞行器表面会遇到湍流与高温非平衡效应耦合作用的新问题.这种高焓湍流边界层壁面摩阻产生机制是新型高超声速飞行器所关注的基础科学问题,厘清此产生机制可以为减阻方法的设计提供指导,具有重要的工程实用价值.本文选取高超声速飞行时楔形体头部斜激波后的高焓流动状态,开展了考虑高温非平衡效应的湍流边界层直接数值模拟研究,并设置同等边界层参数下的低焓完全气体湍流边界层流动作为对比,采用RD (Renard&Deck)分解技术研究了高焓湍流边界层摩阻的主要产生机制,对摩阻产生的主要贡献项积分函数分布进行了详细分析,研究了高温非平衡效应对摩阻产生的影响规律;采用象限分析技术,研究了摩阻分解湍动能生成项的主导流动事件.计算结果表明,高温非平衡效应会使得壁面摩阻脉动条带的流向和展向尺寸均减小.分子黏性耗散项和湍动能生成项是高焓湍流边界层摩阻生成的主要流动过程.分子黏性耗散项主要作用在近壁区,高焓流动的分布与低焓流动存在差异.象限分析表明,上抛和下扫运动是影响摩阻分解中湍动能生成项的主导事件.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号