首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The IR absorption spectra of solutions of SF6 in liquid argon are studied at a temperature of 93 K in the concentration interval 10?5–10?7 mole fractions. A sample with a natural abundance of isotopes and a monoisotope 34SF6 sample are studied. The frequencies, half-widths, and relative intensities of bands in the vibrational spectrum of all isotopomers of the molecule are determined. For the 34SF6 molecule, the ratio of integral absorption coefficients of fundamental bands A4)/A3)=0.07(6) is larger than 32SF6:A4)/A3)=0.66(4) for the 32SF6 molecule, which corresponds to the same signs of P3 and P4. The change in the intensity of the ν26 and ν56 bands upon isotopic substitution is explained by the change in the resonance contributions of due to the isotope shift of the ν3 band.  相似文献   

2.
The density dependences of the absorption cross sections and refractivity are experimentally studied for the SF6 and CF4 molecules in pure gases in the region of their ν3 infrared vibrational-rotational antisymmetric modes. The dispersions of the refractive index are determined for both compounds by the Kramers-Kronig transformation of the spectral data obtained, and, for the SF6 isotopomers, they are also measured by the method of two-color interferometry. Strong nonlinear dependences of optical parameters and their dispersions on the gas density are observed. The values of second optical virial coefficient B R (ν) obtained for pure SF6 are more than an order of magnitude greater than the values found earlier for mixtures of SF6 with buffer rare gases. The results of calculations of the second virial coefficients of the absorption cross section and refractivity in terms of the DID model of interacting dipoles are in agreement with the experimental data in the band wings. Correlations between the behavior of the spectral dependence of functions B R (ν) and the parameters of model intermolecular potentials used in the calculations are found.  相似文献   

3.
Interaction of a strong converging shock wave with an SF6 gas bubble is studied, focusing on the effects of shock intensity and shock shape on interface evolution. Experimentally, the converging shock wave is generated by shock dynamics theory and the gas bubble is created by soap film technique. The post-shock flow field is captured by a schlieren photography combined with a high-speed video camera. Besides, a three-dimensional program is adopted to provide more details of flow field. After the strong converging shock wave impact, a wide and pronged outward jet, which differs from that in planar shock or weak converging shock condition, is derived from the downstream interface pole. This specific phenomenon is considered to be closely associated with shock intensity and shock curvature. Disturbed by the gas bubble, the converging shocks approaching the convergence center have polygonal shapes, and the relationship between shock intensity and shock radius verifies the applicability of polygonal converging shock theory. Subsequently, the motion of upstream point is discussed, and a modified nonlinear theory considering rarefaction wave and high amplitude effects is proposed. In addition, the effects of shock shape on interface morphology and interface scales are elucidated. These results indicate that the shape as well as shock strength plays an important role in interface evolution.  相似文献   

4.
5.
Lithium ionic conductivity and spin-lattice relaxation rates were measured in Li8ZrO6 and Li6Zr2O7 solid electrolytes. It was found that the Li8ZrO6 solid electrolyte undergoes a transition to the superionic state in the temperature range 673–703 K. It was shown that Li+ ions are mobile in particular lattice positions of the Li6Zr2O7 phase, and that ionic conductivity is monotonic at an activation energy of 79.4 kJ/mol.  相似文献   

6.
Crystalline materials of the compositions Cs4SnBr6, CsSnBr3, and CsBr-Sn (0.1 mol %) are investigated using x-ray diffraction and luminescent methods. The formation of the CsSnBr3 phase is found to occur in metastable Cs4SnBr6 and CsBr-Sn. It is established that the CsSnBr3 crystalline phase in the Cs4SnBr6 metastable phase is a more stable compound as compared to the CsSnBr3 bulk crystal, which undergoes oxidation and hydration in air.  相似文献   

7.
The thermophysical properties of oxyfluoride (NH4)3NbOF6 were studied in detail over wide ranges of temperatures and pressures. At atmospheric pressure, a sequence of four structural phase transitions was established with the following changes in entropy: ΔS 1 = Rln 2.7, δS 2 = Rln38.3, ΔS 3 = 0.08R, and ΔS 4 = 0.17R. An external hydrostatic pressure was found to narrow the region of existence of the initial cubic phase. A triple point was detected in the p-T diagram; at a pressure above 0.07 GPa, the transition between the tetragonal and monoclinic phases occurs through a distorted high-pressure phase.  相似文献   

8.
Temperature dependences of specific heat Cp(T) and coefficient of thermal expansion ;(T) for Na0.95Li0.05NbO3 sodium-lithium niobate ceramic samples are investigated in the temperature range of 100–800 K. The Cp(T) and α(T) anomalies at T3 = 310 ± 3 K, T2 = 630 ± 8 K, and T1 = 710 ± 10 K are observed, which correspond to the sequence of phase transitions N ? Q ? S(R) ? T2(S). The effect of heat treatment of the samples on the sequence of structural distortions was established. It is demonstrated that annealing of the samples at 603 K leads to splitting of the anomaly corresponding to the phase transition QR/S in two anomalies. After sample heating to 800 K, the only anomaly is observed in both the Cp(T) and ;(T) dependence. Possible mechanisms of the observed phenomena are discussed.  相似文献   

9.
It has been found that SF6 molecules captured by large van der Waals clusters (CO2) N (where N ≥ 102 is the number of monomers in a cluster) in intersecting molecular and cluster beams sublimate from the surface of clusters after a certain time and carry information on the velocity and temperature (internal energy) of clusters. Experiments have been carried out for detecting these molecules by means of a pyroelectric detector and the infrared multiphoton excitation method. The multiphoton absorption spectra of molecules sublimating from the surface of clusters have been obtained. The temperature of the (CO2) N nanoparticles in the cluster beam has been estimated using these spectra and comparing them with the infrared multiphoton absorption spectra of SF6 in the initial molecular beam.  相似文献   

10.
The crystal structure and magnetic properties of the (La0.3Sr0.7)0.5Ca0.5FeO3 solid solution with a perovskite structure have been investigated. The solid solution has been synthesized according to the high-pressure technique. The unit cell parameters have been refined using the Rietveld full-profile analysis under the assumption of the single-phase crystalline state and the two-phase model corresponding to the parent compositions. It follows from the calculations that the best agreement between the experimental data and the theoretical curve is observed for the two-phase model. The measurement of the magnetic properties also indicates the coexistence of two magnetic phases.  相似文献   

11.
The monoclinic (space group C2/m) superstructure of V14O6, which is formed in the atom-vacancy ordering of the tetragonal solid solution of oxygen in vanadium, is studied by the methods of x-ray diffraction and symmetry analysis. It has been found that the channel of the order-disorder phase transition attributed to the formation of the monoclinic suboxide V14O6 includes six superstructure vectors belonging to three non-Lifshitz stars {k 1−1}, {k 1−2}, and {k 1–3} of one type {k 1}. The distribution function of the O atoms in the V14O6 monoclinic superstructure has been calculated. It has been shown that the displacements of V atoms distort the body-centered tetragonal metal sublattice, thus preparing the formation of the fcc sublattice and the transition from the suboxide V14O6 to the cubic vanadium monoxide with the B1 structure.  相似文献   

12.
Raman scattering in Rb2TeBr6 and Cs2TeBr6 crystals is studied. The phonon spectra of the crystals are calculated using the factor group method. The number of Raman-active modes, their symmetries, and selection rules are found. Observed Raman spectrum lines are identified with atomic vibration modes of the crystal.  相似文献   

13.
The high-temperature solid solution hardening of the ternary Ni3Al + Me phase (Me is a metal) is analyzed. The hardening resulting from the alloying by refractory elements (Nb, Ta, Hf) is considered in detail. This phenomenon is established to have a multifactorial nature.  相似文献   

14.
For over two decades, the high-temperature phase transition (HTPT) at around T p = 180 °C on KH2PO4 (KDP), which involves an ionic conductivity increase, constitutes a controversial subject; while most authors ratify a physical transformation (tetragonal → monoclinic phase transition), others defend the chemical transformation. A careful high-temperature phase behavior examination of this acid salt by means of modulated and conventional differential scanning calorimetry, thermogravimetric analysis, simultaneous thermogravimetric and differential scanning calorimetry, impedance spectroscopy, and temperature evolution of X-ray diffraction was performed to provide a possible solution to this long-standing issue. We found that the structural phase transition does not take place. Instead, a chemical transformation occurs at T p. When KDP is heated through this temperature, the sample initially corresponding to a single phase (tetragonal) transforms to a sample composed of two solid phases: tetragonal KDP, located at its bulk, and monoclinic potassium metaphosphate (KPO3), located at its surface. Most of the water produced evaporates, but a small portion of liquid water bonds to KPO3. Because this is of polymeric nature, it takes the role of a host matrix that contains liquid water regions. Consequently, given that part of the water dissolves a portion of surface salt (providing protons), the surface sample system behaves in a similar manner to a polymer electrolyte membrane where the proton transport mechanism includes the vehicle type, using hydronium (H3O+) as a charge carrier. On further heating, the bulk tetragonal KDP phase reduced to its total decomposition. The metastability of the high-temperature phase below T p is also explained.  相似文献   

15.
The temperature dependences of the permittivity, birefringence, optical transmittance, and small-angle light scattering and their variations with time are studied for single crystals of the Pb0.94Ba0.06Sc0.5Nb0.5O3 relaxor (PBSN-6) in the heterophase region of coexistence of different phases. It is shown that an electric field induces a phase transition to the ferroelectric state, which manifests itself within some time (delay time τ) after application of the electric field to the crystal. The observed dependence of the temperature of this transition on the heating rate of the sample and the changes in the birefringence and small-angle light scattering intensity with time confirm the kinetic character of the induced transition. Temperature dependences of the delay time τ for different electric fields are constructed. It is revealed that, at low temperatures, the delay time τ decreases with increasing temperature. This agrees with the behavior of τ in classical relaxors. At the Vogel-Fulcher temperature, however, one observes that dτ/dT reverses sign and τ increasing as the temperature continues to increase. This anomalous behavior of τ in the heterophase region is accounted for by the coexistence of the cubic relaxor and rhombohedral macrodomain phases.  相似文献   

16.
The cationic conductivities of Cu2Se and Ag2Se superionic conductor solid solutions in the composition region from Cu2Se to Cu0.7Ag1.3Se are measured. It is demonstrated that the activation energy of ionic conduction depends only slightly on the chemical composition, varies from 0.14 to 0.17 eV, and exhibits a weakly pronounced maximum for the Ag0.44Cu1.56Se solid solution. The ionic Seebeck coefficients are measured for the Ag0.23Cu1.757Se solid solution. The heat of cation transfer in this solution is found to be equal to 0.144±0.014 eV from the Seebeck coefficients.  相似文献   

17.
The temperature dependence of the Hall coefficient of a single crystal of the p-Sb2Te2.9Se0.1 solid solution grown by the Czochralski technique is studied in the temperature range 77–450 K. The data on the Hall coefficient of the p-Sb2Te2.9Se0.1 are analyzed in combination with the data on the Seebeck and Nernst–Ettingshausen effects and the electrical conductivity with allowance for interband scattering. From an analysis of the temperature dependences of the four kinetic coefficients, it follows that, at T < 200 K, the experimental data are qualitatively and quantitatively described in terms of the one-band model. At higher temperatures, a complex structure of the valence band and the participation of the second-kind additional carriers (heavy holes) in the kinetic phenomena should be taken into account. It is shown that the calculations of the temperature dependences of the Seebeck and Hall coefficients performed in the two-band model agree with the experimental data with inclusion of the interband scattering when using the following parameters: effective masses of the density of states of light holes md1*≈ 0.5m0 (m0 is the free electron mass) and heavy holes md2*≈ 1.4m0, the energy gap between the main and the additional extremes of the valence band ΔEv ≈ 0.14 eV that is weakly dependent on temperature.  相似文献   

18.
First principle FLAPW-GGA calculations have been performed with the purpose to understand the effect of Ti-doping on the electronic properties for the newly discovered tetragonal iron arsenide-oxide Sr4Sc2Fe2As2O6 (abbreviated as FeAs42226) as the possible parent phase for the new FeAs superconductors. Our results show that the insertion of Ti into Sc sublattice of this five-component iron arsenide-oxide phase leads to the resolute change of electronic structure of FeAs42226. Namely, the insulating oxygen-containing [Sr4Sc2O6] blocks in Ti-doped FeAs42226 became conducting, and this differs essentially from the known picture for all others FeAs superconductors where the conducting [Fe2As2] blocks are alternated with insulating blocks. Moreover in sharp contrast with FeAs-based superconductors with Fe 3d bands near the Fermi level, for Ti-doped FeAs42226 in this region the Ti 3d states are dominated, whereas the Fe 3d states are suppressed.  相似文献   

19.
The method is described and the experimental results are presented on the temperature determination of the (CF3I) N clusters in a beam (N ⩽ 102 is a number of monomers in a cluster) using SF6 molecules from intersecting molecular beam as probe thermometers. The SF6 molecules are captured by clusters in the crossed cluster and molecular beams and, after a certain time, sublimate from the surface of clusters carrying information on the velocity and temperature (internal energy) of clusters. Using time-of-flight (TOF) method the kinetic energy (velocity) of sublimated SF6 molecules was measured and the temperature of clusters was determined to be T cl = (88 ± 15) K.  相似文献   

20.
A theoretical phase diagram of the [N(CH3)4]2CuCl4 crystal with a new commensurate phase characterized by a dimensionless wavenumber q = 2/5 is constructed on a plane specified by two coefficients of the thermodynamic potential. This diagram is used as the basis for the construction of a theoretical pressure-temperature (P-T) phase diagram. The theoretical P-T phase diagram thus obtained is compared with the experimental P-T phase diagram.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号