首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An approach to stable covalent immobilization of chemically modified penicillin G acylase from Escherichia coli on Sepabeads® carriers with high retention of hydrolytic activity and thermal stability is presented. The two amino-activated polymethacrylate particulate polymers with different spacer lengths used in the study were Sepabeads® EC EA and Sepabeads® EC HA. The enzyme was first modified by cross-linking with polyaldehyde derivatives of starch in order to provide it with new useful functions. Such modified enzyme was then covalently immobilized on amino supports. The method seems to provide a possibility to couple the enzyme without risking a reaction at the active site which might cause the loss of activity. Performances of these immobilized biocatalysts were compared with those obtained by the conventional method with respect to activity and thermal stability. The thermal stability study shows that starch-PGA immobilized on Sepabeads EC-EA was almost 4.5-fold more stable than the conventionally immobilized one and 7-fold more stable than free non-modified PGA. Similarly, starch-PGA immobilized on Sepabeads EC-HA was around 1.5- fold more stable than the conventionally immobilized one and almost 9.5-fold more stable than free non-modified enzyme.  相似文献   

2.
介孔材料的修饰及固定青霉素酰化酶的稳定性研究   总被引:4,自引:0,他引:4  
利用扩孔剂的作用合成出较大孔径(12 nm)的介孔材料SBA-15, 并进行表面氨基修饰, 以此为载体, 以戊二醛为交联剂, 对青霉素酰化酶进行组装固定, 并对固定化青霉素酰化酶(PGA)的稳定性进行了深入的研究. 实验结果表明, PGA与载体交联后仍保持活性. 热稳定性研究结果表明, 制备的固定化青霉素酰化酶在低于60 ℃时保持稳定; pH在6~11范围内保持稳定; 固定化酶重复使用10次之后, 仍具有高达90%的残留活力.  相似文献   

3.
The novel di-functional magnetic nanoflowers (DMNF) which had both epoxy groups and hydrophilic catechol as well as phthaloquinone groups capable of covalently coupling of penicillin G acylase (PGA) were characterized by scanning electron microscopy, transmission electron microscope (TEM), vibrating sample magnetometer, N2 adsorption, and so on. The studies showed that DMNF possessed “hierarchical petal” structure of nanosheets had specific saturation magnetization of 39.7 emu/g and average pore diameter of 25.4 nm as well as specific surface area of 17.28 m2/g. For hydrolysis of penicillin G potassium catalyzed by the PGA immobilized on DMNF with enzyme loading of 106 mg/g-support, its apparent activity reached 2,667 U/g, which benefited from the “hierarchical petal” and large pore structure of the magnetic DMNF leading to high enzyme loading and fast diffusion of substrate molecules to the immobilized PGA to reaction. The apparent activity of the immobilized PGA could keep 2,408 U/g (above 90% of its initial activity) after repeating use for 10 cycles. The magnetic immobilized PGA exhibited excellent operational stability due to covalently coupling of the enzyme molecules between the support by covalent interaction of the amino groups of PGA and the reactive groups of epoxy, catechol, and phthaloquinone groups on DMNF. Furthermore, the PGA displayed good acid and alkaline resistance as well as thermal stability by immobilization using DMNF.  相似文献   

4.
介孔材料MCFs的合成及组装青霉素酰化酶的性质研究   总被引:4,自引:0,他引:4  
介孔材料由于具有纳米级规则孔道和巨大的比表面积而在催化、吸附及分离等方面存在较大的应用价值.近年来,由介孔分子筛如MCM-41和SBA-15州等组装功能性材料已成为研究的热点.酶作为高效催化剂有许多优点,但在溶液中易失活,使用后无法回收,有的酶在溶液中还存在自水解问题:将酶组装在介孔材料中制成固定化酶则可解决上述问题.目前已成功地将辣根过氧化物酶  相似文献   

5.
Penicillin G acylase (PGA) from Escherichia coli was immobilized on vinyl sulfone (VS) agarose. The immobilization of the enzyme failed at all pH values using 50 mM of buffer, while the progressive increase of ionic strength permitted its rapid immobilization under all studied pH values. This suggests that the moderate hydrophobicity of VS groups is enough to transform the VS-agarose in a heterofunctional support, that is, a support bearing hydrophobic features (able to adsorb the proteins) and chemical reactivity (able to give covalent bonds). Once PGA was immobilized on this support, the PGA immobilization on VS-agarose was optimized with the purpose of obtaining a stable and active biocatalyst, optimizing the immobilization, incubation and blocking steps characteristics of this immobilization protocol. Optimal conditions were immobilization in 1 M of sodium sulfate at pH 7.0, incubation at pH 10.0 for 3 h in the presence of glycerol and phenyl acetic acid, and final blocking with glycine or ethanolamine. This produced biocatalysts with stabilities similar to that of the glyoxyl-PGA (the most stable biocatalyst of this enzyme described in literature), although presenting just over 55% of the initially offered enzyme activity versus the 80% that is recovered using the glyoxyl-PGA. This heterofuncionality of agarose VS beads opens new possibilities for enzyme immobilization on this support.  相似文献   

6.
Five differenthydrophobic ligands immobilized on 4% (4XL) and 6% (6XL) crosslinked agarose were used to study the single-step purification of penicillin acylase from cell lysate. The 4XL gels showed relatively higher specific activity and recovery than the 6XL gels. In single-step purification, highly active enzyme (42 U/mg) was obtained using moderately hydrophobic ligand (octyl). The crude enzyme immobilized on octyl gel by adsorption showed significant operational stability over a period of 30 d at room temperature. Reactor studies demonstrated the feasibility of hydrophobic ligands as a medium for immobilization.  相似文献   

7.
In this paper, an efficient method was established for continuous kinetic resolution of racemic 2-aminobutanol by selective hydrolysis of N-phenylacetyl (±)-2-aminobutanol over immobilized penicillin G acylase (PGA) in a fixed-bed reactor. Several N-acylated derivatives of 2-aminobutanol were screened in batch experiments, and it was found that the hydrolysis of N-phenylacetyl (±)-2-aminobutanol proceeded smoothly in the presence of immobilized penicillin G acylase with satisfied enantioselectivity. Thus, the reaction parameters were optimized in a fixed-bed reactor. Under the optimized conditions, 39.3% conversion of N-phenylacetyl (±)-2-aminobutanol and 98.2% ee value of S-2-aminobutanol were obtained. This fixed-bed system was operated continuously for 40 h without significant decrease of enzyme activity. It has been demonstrated to be more efficient compared to the batch experiments.  相似文献   

8.
In this paper, the use of penicillin G acylase (PGA) as a biocatalyst and as a chiral selector is described. Penicillin G-acylase is an interesting enzyme used in the manufacture of semisynthetic antibiotics and, in particular, in the production of 6-APA by hydrolysis of penicillin G. Five PGA-based HPLC columns have been prepared by using two different silica supports by employing two immobilization methods, namely "in situ" and "in batch". The effects of the immobilization techniques and of different silica pore size on the catalytic properties of the enzyme as well as the applicability of the PGA-bonded stationary phases as chiral selectors for a number of chiral drugs have been investigated. The HPLC columns based on immobilized PGA combine the hydrolytic activity and the chiral recognition properties of PGA, therefore they have been used for the development of a combined reaction-separation system for chiral and achiral substrates.  相似文献   

9.
Immobilized penicillin G acylase (PGA) as an important industrial catalyst can catalyze penicillin G potassium (PG) to 6‐aminopenicillanic acid (6‐APA). 6‐APA is an important intermediate for semisynthetic penicillin drugs, which occupies a huge market space in the anti‐inflammatory field; as a result, immobilized PGA occupies a huge market space in the pharmaceutical field. However, at present, there are different degrees of defects in the preparation and production process of immobilized PGAs on the market because of the huge demand; therefore, the performance of immobilized PGA and its productivity will bring huge economic benefits to enterprises. Therefore, research on immobilized PGA has always been a focus. This review first introduces the source, classification, structure, and catalytic mechanism of PGA and then studies the development of immobilization methods, immobilized carriers, reaction media, enzyme activity regeneration, and reactors of immobilized PGA in recent years.  相似文献   

10.
Thermomyces lanuginosus lipase (TLL) was immobilized on native and modified Immobead 150, with epoxy groups removed by hydrolysis and oxidized to add aldehyde on its surface. Immobilizations on both supports were performed by adsorption, adsorption and cross-linking, covalent attachment, multipoint covalent attachment, and, for the modified support, multipoint covalent attachment using ethylenediamine. Biocatalysts were evaluated for thermal and solvent stabilities, and the best biocatalyst was also tested after incubation in ionic liquids and used in the synthesis of butyl butyrate and isoamyl butyrate. Multipoint covalent immobilized TLL on the native Immobead 150 (Emulti) showed a half-life of 5.32 h at 70 °C, being approximately 30 times more stable than its soluble form; it showed high stability in acetone, hexane, and isooctane. Its enzymatic activity was up to 40 % when incubated in ionic liquids. Ester synthesis produced yields of esterification above 60 % in 24 h. Of all immobilization protocols, the Emulti performed best concerning the thermal, solvent, and ionic liquids stabilities. Emulti was successfully applied to the synthesis of butyl butyrate and isoamyl butyrate, which are very important products for the food and beverage industries.  相似文献   

11.
高分子载体材料对青霉素酰化酶的固定化作用   总被引:3,自引:0,他引:3  
介绍了天然高分子材料和合成高分子材料对青霉素酰化酶的固定化作用,着重讨论了高分子材料的制备、性质及其表面修饰对固定化酶活性和使用稳定性的影响。  相似文献   

12.
微波辐射高效共价固定青霉素酰化酶   总被引:1,自引:0,他引:1  
为提高青霉素酰化酶的共价固定化效率, 在微波辐射条件下将酶蛋白共价固定于介孔泡沫硅(MCFs)的孔道中. 通过正硅酸四乙酯水解缩合制备介孔泡沫硅, 再于微波辅助下将青霉素酰化酶共价固定在其孔道中. 以固定化酶相对活力和活力回收为指标, 考察了加酶量、固定化温度、微波辐射时间等条件对酶固定化效率的影响. 实验结果表明: 当加酶量为60 mg/g, 固定化温度为20 ℃, 微波辐射140 s, 固定化酶相对活力达到178.1%, 表观活力为1191.3 U/g(以湿重计). 与常规方法相比, 微波辅助固定化酶时, 固定化酶相对活力提高34.5%, 固定化时间亦大幅缩短至数分钟, 这为青霉素酰化酶的高效共价固定化提供了一条新的途径.  相似文献   

13.
The mutant penicillin G acylase (PGA) 3K-PGA contains three additional Lys residues on the surface opposite the active site. This protein was designed to selectively drive its immobilization on aldehyde supports. We describe here a modified bottom-up proteomic method to assess the orientation of the immobilized wild-type and mutant proteins to verify our hypothesis of a driven immobilization induced by the mutations introduced. Tryptic digestion of the immobilized enzymes followed by liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis of released peptides was performed. This protocol generated peptides from the most accessible surface areas of the immobilized protein, thus not directly bound to the solid support, providing direct evidence of the areas involved in the linkage to the solid matrix. The results obtained suggest that 72 % of the wild-type PGA is immobilized on aldehyde agarose mainly through the Lys residues on the same side of the active site, whereas 3K-PGA reacted with the same support preferentially through the additional Lys residues introduced by mutation on the opposite side. This demonstrates that the active site of the 3K-PGA faces mostly (63 %) toward the reaction medium, resulting in significantly improved accessibility to the substrates. This finding is supported by the catalytic properties of the immobilized biocatalysts. The two immobilized preparations were tested in the synthesis of mandelyl-7-aminocephalosporanic acid (mandelyl-7-ACA) by N-acylation of the β-lactam nucleus (7-aminocephalosporanic acid) with mandelic acid methyl ester: upon immobilization, the synthetic properties of wild-type PGA strongly decreased, whereas those of 3K-PGA were unaffected. Furthermore, the activity of 3K-PGA was not influenced by the physicochemical nature of the support used for immobilization (glyoxyl agarose or aldehyde Sepabeads) unlike that of wild-type PGA, whose active site is close to the matrix. The results obtained from the analytical characterization correlate well with those obtained by investigation of the synthetic properties of the immobilized enzymes both in the synthesis of mandelyl-7-ACA and in the preparative synthesis of cefazolin. This work highlights the effect exerted by site-directed mutagenesis on the orientation of PGA upon immobilization on solid matrices and suggests how protein engineering tools can be exploited in a synergistic fashion to rationally develop efficient biocatalysts.
Figure
Site directed mutagenesis & enzyme orientation  相似文献   

14.
采用直接共聚法合成表面含有乙烯基的具有立方相Ia3d结构的介孔硅分子筛(V-ClMS),然后对乙烯基团进行环氧化制备得到表面环氧基功能化的介孔硅分子筛(E-CIMS),采用X射线衍射、N2吸附-脱附、透射电镜、热重分析和13C固体核磁共振对制备的介孔硅分子筛进行了表征.结果表明,表面含有乙烯基的V-ClMS介孔硅分子筛能被一步成功合成,并易于发生环氧化而获得表面环氧基功能化的E-CIMS介孔硅分子筛.将E-CIMS介孔硅分子筛作为载体用于固定化青霉素G酰化酶(PGA),研究了表面环氧基团对固定化PGA初活性和操作稳定性的影响.结果表明,随着表面环氧基团数量的增加,介孔硅分子筛孔径减小,表面疏水性增加,导致载酶量和初活性减小.但介孔硅分子筛表面适量的环氧基团能增强E-CIMS介孔硅分子筛与PGA之间的相互作用,从而提高固定化PGA的操作稳定性.  相似文献   

15.
固定化青霉素酰化酶新型载体PEI/SiO2的制备及其特性   总被引:5,自引:0,他引:5  
通过γ-氯丙基三甲氧基硅烷的媒介, 将聚乙烯亚胺(PEI)化学偶联在硅胶微粒表面, 制备了固定化青霉素酰化酶的新型复合载体PEI/SiO2, 最终制得了活性高且稳定性好的固定化青霉素酰化酶. 通过测定复合载体表面PEI的偶合量, 考察了各种反应条件对复合载体制备的影响规律; 通过红外光谱与电导滴定法测定, 对复合载体表面的化学结构与组成进行了表征; 为探索复合载体PEI/SiO2固定化酶的作用机理, 测定了复合载体在固定化酶前的ζ电位. 研究结果表明, 通过氯丙基硅烷偶联剂的媒介, 聚胺大分子PEI可以充分地被化学偶联在SiO2表面, 键合量可达到15%. 偶联反应的适宜条件: 反应温度90-94 ℃; 反应时间5h; PEI的质量浓度0.45-0.50 g/mL. 由于PEI分子链中含有大量氨基, 少量的共价键联与大量的物理吸附相结合, 既可使青霉素酰化酶被快速稳定地固定化, 又能很好地保持酶的构象, 使其具有较高的催化活性与活力回收率, 而且具有良好的连续操作稳定性, 重复使用15次, 固定化酶的活性可稳定地保持在初活性的87.5%水平上.  相似文献   

16.
Various glycidyl methacrylate (GMA) copolymers were synthesized by suspension polymerization, using pentaerythritol triacrylate (PETA), trimethylolpropane triacrylate (TMPTA), and trimethylolpropane trimethacrylate (TRIM) as crosslinking comonomers. These copolymers were evaluated for the immobilization of penicillin G acylase. Broad pore-size distribution that was observed was in the range 5-300 nm. Both surface area and pore volume increased with increase in the mole fraction of crosslinking comonomer (increasing crosslink density). The pore volume of the copolymers was more than doubled by including lauryl alcohol as porogen. Binding of penicillin G acylase (PGA) was quantitative on highly crosslinked copolymers. The expression of bound PGA was better on the relatively more hydrophilic GMA-TMPTA and GMA-PETA copolymer supports compared to the GMA-TRIM copolymers. Among the different copolymers studied, GMA-TMPTA copolymer 7411 exhibited highest activity of immobilized penicillin G acylase (167.4 IU/g) with 35.1% expression.  相似文献   

17.
Pig pancreas carboxypeptidase B has been immobilized by covalent attachment to a polyacrylamide-type bead support possessing carboxylic functional groups activated by water-soluble carbodiimide. The optimum conditions of immobilization were determined. The activation of the support and the coupling reaction were performed in 0.1 M sodium citrate/sodium phosphate buffer (pH 4.5) using a support-carbodiimide-enzyme weight ratio 4:8:1 at 0-4 degrees C. Under such conditions, the highest activity achieved was 6700 U/g solid. The catalytic properties and stability of immobilized carboxypeptidase B were studied and compared with the corresponding properties of the soluble enzyme. The specific activity of the immobilized enzyme calculated on bound protein basis was about 70% of that of soluble enzyme. The optimum pH for the catalytic activity of the immobilized carboxypeptidase B was practically identical with that of soluble enzyme (pH 7.6-7.7). The apparent optimum temperature of the immobilized carboxypeptidase B was about 7 degrees C higher than that of the soluble enzyme. With hippuryl-L-arginine as substrate, Kmapp value of the immobilized enzyme was tenfold higher than the Km value of the soluble enzyme. The conformational stability of the enzyme was markedly enhanced by the strongly hydrophylic microenvironment in a wide temperature and pH range. The immobilized carboxypeptidase B was used for stepwise digestion of cytochrome C.  相似文献   

18.
Poly[(glycidyl methacrylate)-co-(glycerol monomethacrylate)]-grafted magnetic microspheres were prepared by graft random copolymerization via ATRP from polymer microspheres with dispersed Fe(3)O(4) nanoparticles. Penicillin G acylase (PGA) was immobilized onto the polymer brush-grafted magnetic microspheres. The immobilized PGA prepared with initial glycidyl methacrylate/glycerol monomethacrylate ratios of 40/60 to 60/40 possessed higher catalytic activity than that prepared with higher proportions of glycidyl methacrylate in the initial monomer mixture. The immobilized PGA showed high thermal stability and enhanced tolerability to the pH variance.  相似文献   

19.
 以 Span-60 和 Tween-20 为复合分散剂, 以 N,N′-亚甲基双丙烯酰胺为交联剂, 以甲基丙烯酸缩水甘油酯和烯丙基缩水甘油醚为功能性单体, 用反相悬浮聚合技术成功制备了含环氧基团的聚合物载体, 并用红外光谱和低温氮吸附对聚合物载体进行了表征. 以 Span-60 和 Tween-20 为复合分散剂, 替代原有的 Span-60 和硬脂酸钙复合分散剂, 大幅度减少了后处理过程中所需的时间和溶剂用量, 使固定化青霉素酰化酶的活性从 215 U/g 提高到 320 U/g. 与游离酶相比, 该固定化酶具有较好的操作稳定性, 在 pH = 5~11 和不高于 50 oC 的环境中具有较好的稳定性. 固定化酶的水解反应动力学过程与游离酶相同, 均遵循米氏反应动力学, 而且活性与底物浓度密切相关. 当底物浓度为 6.5% 时, 固定化酶的活性最高, 达到 353 U/g.  相似文献   

20.
Different strategies for the preparation of efficient and robust immobilized biocatalysts are here reviewed. Different physico-chemical approaches are discussed.i.- The stabilization of enzyme by any kind of immobilization on pre-existing porous supports.ii.- The stabilization of enzymes by multipoint covalent attachment on support surfaces.iii.- Additional stabilization of immobilized-stabilized enzyme by physical or chemical modification with polymers.These three strategies can be easily developed when enzymes are immobilized in pre-existing porous supports. In addition to that, these immobilized-stabilized derivatives are optimal to develop enzyme reaction engineering and reactor engineering. Stabilizations ranging between 1000 and 100,000 folds regarding diluted soluble enzymes are here reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号