首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Multicomponent sensing in complex matrices with synthetic pores became feasible with the introduction of amplifiers. Amplifiers are defined as molecules that can covalently capture undetectable analytes after enzymatic signal generation and drag them into the pore for transduction. Here, we introduce converters as molecules that can shift the reactivity of amplifiers in situ to capture chemoorthogonal analytes. For this purpose, a series of dialkoxynaphthalene (DAN) and dialkoxyanthracene (DAA) hydrazinoboronic acids was prepared in situ from DAN and DAA hydrazides and formylphenylboronic acids. These converted amplifiers efficiently inactivate synthetic pores with internal naphthalenediimide clamps. This pore inactivation by DAN and DAA hydrazinoboronic acids vanishes in the presence of catechols such as (+)-catechin, presumably because the obtained boronate esters are too large to bind within the synthetic beta-barrel pore or because they prefer to partition into the bilayer membrane. The resulting increase in pore activity with increasing catechol concentration at constant amplifier concentration is shown to be compatible with the sensing of polyphenols in green tea.  相似文献   

2.
In this report, we describe design, synthesis, evaluation and molecular dynamics simulations of synthetic multifunctional pores with pi-acidic naphthalenediimide clamps. Experimental evidence is provided for the formation of unstable but inert, heterogeneous and acid-insensitive dynamic tetrameric pores that are sensitive to base and ionic strength. Blockage experiments reveal that the introduction of aromatic electron donor-acceptor interactions provides access to the selective recognition of pi-basic intercalators within the pore. This breakthrough is important for the application of synthetic pores as multianalyte sensors.  相似文献   

3.
A novel supramolecular clipping design for influencing the photophysical properties of functional molecular assemblies, by the preorganization (clipping) of chromophores, is described. Several chromophores end functionalized with molecular recognition units were designed. These molecular recognition units serve as handles to appropriately position these systems upon noncovalent interactions with multivalent guest molecules (supramolecular clippers). Towards this goal, we have synthesized 1,5‐dialkoxynaphthalene (DAN) and naphthalenediimide (NDI) functionalized with dipicolylethylenediamine (DPA) motifs. These molecules could preorganize upon noncovalent clipping with adenosine di‐ or triphosphates, which resulted in preassociated excimers and mixed (cofacial) charge‐transfer (CT) assemblies. Chiral guest binding could also induce supramolecular chirality, not only into the individual chromophoric assembly but also into the heteromeric CT organization, as seen from the strong circular dichroism (CD) signal of the CT transition. The unique ability of this design to influence the intermolecular interactions by changing the binding strength of the clippers furthermore makes it very attractive for controlling the bimolecular photophysical processes.  相似文献   

4.
The thermally induced conformational switching of a stacked dialkxoynaphthalene–naphthalenetetracarboxylic diimide (DAN–NDI) amphiphilic foldamer to an NDI–NDI fibril aggregate is described. The aggregated fibril structures were explored by UV/Vis, circular dichroism (CD), atomic‐force microscopy (AFM), and TEM techniques. Our findings indicate that the aromatic DAN–NDI interactions of the original foldamer undergoes transformation to a fibrillar assembly with aromatic NDI–NDI stacked interactions. These structural insights could help inform new molecular designs and increase our understanding of fibrillar assembly and aggregation process in aqueous solution.  相似文献   

5.
We report the design, synthesis, and evaluation of synthetic multifunctional pores with adhesive, that is, electron-deficient naphthalenediimide (NDI) pi-clamps at their inner surface. We find that, in lipid bilayer membranes, comparable synthetic pores with and without pi-clamps have similar, nanomolar activity. Functional relevance of adhesive pi-clamping within synthetic pores is demonstrated by means of an innovative in situ blocker screening method. The obtained line of experimental evidence includes (a) different blockage efficiency with and without pi-clamps (quantified as clamping factors), (b) increasing clamping factors with increasing blocker charge (supportive ion pairing), and, most importantly, (c) increasing clamping factors with increasing aromatic electron donor-acceptor interactions. The availability of advanced synthetic multifunctional pores with refined active sites is important for practical applications in domains such as drug discovery (enzyme inhibitor screening) and diagnostics (multianalyte sensing).  相似文献   

6.
The recognition and transport of anions is usually accomplished by hydrogen bonding, ion pairing, metal coordination, and anion–dipole interactions. Here, we elaborate on the concept to use anion–π interactions for this purpose. Different to the popular cation–π interactions, applications of the complementary π‐acidic surfaces do not exist. This is understandable because the inversion of the aromatic quadrupole moment to produce π‐acidity is a rare phenomenon. Here, we suggest that π‐acidic aromatics can be linked together to produce an unbendable scaffold with multiple binding sites for anions to move along across a lipid bilayer membrane. The alignment of multiple anion–π sites is needed to introduce a cooperative multi‐ion hopping mechanism. Experimental support for the validity of the concept comes from preliminary results with oligonaphthalenediimide (O‐NDI) rods. Predicted by strongly positive facial quadrupole moments, the cooperativity and chloride selectivity found for anion transport by O‐NDI rods were consistent with the existence of anion–π slides. The proposed mechanism for anion transport is supported by DFT results for model systems, as well as MD simulations of rigid O‐NDI rods. Applicability of anion–π slides to achieve electroneutral photosynthesis is elaborated with the readily colorizable oligoperylenediimide (O‐PDI) rods. To clarify validity, scope and limitations of these concepts, a collaborative research effort will be needed to address by computer modeling and experimental observations the basic questions in simple model systems and to design advanced multifunctional anion–π architectures.  相似文献   

7.
In this account, studies on synthetic multifunctional pores formed by rigid-rod beta-barrels are summarized comprehensively. The first section outlines the evolution of synthetic multifunctional pores from the introduction of rigid-rod molecules in bioorganic chemistry and the discovery of synthetic beta-barrels in comparison with pertinent developments in related areas of research. Design strategies to position active sites at the inner surface of rigid-rod beta-barrel pores are described in the second section. The third section focuses on the characteristics of transmembrane barrel-stave pores, emphasizing the dynamic nature of supramolecular oligomers with the aid of notional phase and energy diagrams. Section four introduces multifunctionality with the use of synthetic pores as hosts of a rich collection of guests, reaching from inorganic cations to organic macromolecules like peptides, oligonucleotides, polysaccharides and polyacetylenes. In section five, practical applicability of molecular recognition by synthetic multifunctional pores is documented with non-invasive fluorometric enzyme sensing. The application of host-guest chemistry within synthetic pores to couple molecular recognition and translocation with molecular transformation is the topic of section six. The last section mentions some perspectives and challenges with synthetic multifunctional pores.  相似文献   

8.
Cationic ionenes that bear electron‐rich 1,5‐dialkoxynaphthalene (DAN) units within the alkylene segment were allowed to interact with different types of electron‐deficient, acceptor‐containing molecules in an effort to realize intercalation‐induced folding of the ionenes; the collapse of the chains was expected to occur in such a way that the donor and acceptor units become arranged in an alternating fashion. Several acceptor‐bearing molecules were prepared by the derivatization of pyromellitic dianhydride and naphthalene tetracarboxylic dianhydride with two different oligoethylene glycol monomethyl ether monoamines. This yielded acceptor molecules with different water solubility and allowed the examination of solvophobic effects in the folding process. UV/Vis spectroscopic studies were carried out by using a 1:1 mixture of the DAN–ionenes and different acceptor molecules in water/DMSO solvent mixtures. The intensity of the charge‐transfer (CT) band was seen to increase with the water content in the solvent mixture, thereby suggesting that the intercalation is indeed aided by solvophobic effects. The naphthalene diimide (NDI) bearing acceptor molecules consistently formed significantly stronger CT complexes when compared to the pyromellitic diimide (PDI) bearing acceptor molecules, which is a reflection of the stronger π‐stacking tendency of the former. AFM studies of drop‐cast films of different ionene–acceptor combinations revealed that compact folded structures are formed most effectively under conditions in which the strongest CT complex is formed.  相似文献   

9.
This paper reports comprehensive studies on the mixed assembly of bis-(trialkoxybenzamide)-functionalized dialkoxynaphthalene (DAN) donors and naphthalene-diimide (NDI) acceptors due the cooperative effects of hydrogen bonding, charge-transfer (CT) interactions, and solvophobic effects. A series of DAN as well as NDI building blocks have been examined (wherein the relative distance between the two amide groups in a particular chromophore is the variable structural parameter) to understand the structure-dependent variation in mode of supramolecular assembly and morphology (organogel, reverse vesicle, etc.) of the self-assembled material. Interestingly, it was observed that when the amide functionalities are introduced to enhance the self-assembly propensity, the mode of co-assembly among the DAN and NDI chromophores no longer remained trivial and was dictated by a relatively stronger hydrogen-bonding interaction instead of a weak CT interaction. Consequently, in a highly non-polar solvent like methylcyclohexane (MCH), although kinetically controlled CT-gelation was initially noticed, within a few hours the system sacrificed the CT-interaction and switched over to the more stable self-sorted gel to maximize the gain in enthalpy from the hydrogen-bonding interaction. In contrast, in a relatively less non-polar solvent such as tetrachloroethylene (TCE), in which the strength of hydrogen bonding is inherently weak, the contribution of the CT interaction also had to be accounted for along with hydrogen bonding leading to a stable CT-state in the gel or solution phase. The stability and morphology of the CT complex and rate of supramolecular switching (from CT to segregated state) were found to be greatly influenced by subtle structural variation of the building blocks, solvent polarity, and the DAN/NDI ratio. For example, in a given D-A pair, by introducing just one methylene unit in the spacer segment of either of the building blocks a complete change in the mode of co-assembly (CT state or segregated state) and the morphology (1D fiber to 2D reverse vesicle) was observed. The role of solvent polarity, structural variation, and D/A ratio on the nature of co-assembly, morphology, and the unprecedented supramolecular-switching phenomenon have been studied by detail spectroscopic and microscopic experiments in a gel as well as in the solution state and are well supported by DFT calculations.  相似文献   

10.
This tutorial review surveys recent developments in the chemistry of naphthalene diimides (NDIs) and explores their application in the fields of material and supramolecular science. It begins with a discussion of their general uses, methods of syntheses and their electronic and spectroscopic properties. Of interest to their application in the fields of conducting thin films and molecular sensors is the structure-function relationships that exist either as co-components of supramolecular ensembles as in the case of "nanotubes", or as the sole components in molecular wires. Also discussed are advances in NDI research within the areas of energy and electron transfer (covalent and non-covalent systems) and in host-guest chemistry including foldamer, mechanically-interlocked and ligand-gated ion channel examples. Finally, we explore the developments in the recent field of core-substituted NDIs, their photophysical properties and applications in artificial photosynthesis. We conclude with our views on the prospects of NDIs for future research endeavours.  相似文献   

11.
A bilateral Schiff base is reported for the colorimetric and fluorometric dual‐channel sensing of Hg2+ ions by taking advantage of the hydrolysis of carbon‐nitrogen double bond, altering an ICT state mechanism and then Hg2+ ions coordinating with amino moieties of 1,5‐DAN and leading to the aggregation of 1,5‐DAN. Meanwhile, it formed a stable neutral complex of amino‐Hg‐amino. In addition, test strips based on L were fabricated, which also exhibited a good selectivity to Hg2+ as in solution. This work provides a novel approach for the selective recognition of mercury ions. Notably, the color changes are very significant and all the recognition processes can be observed by the naked eyes. We believe the test strips can act as a convenient and efficient Hg2+ test kit.  相似文献   

12.
This paper reports comprehensive studies on the mixed assembly of bis‐(trialkoxybenzamide)‐functionalized dialkoxynaphthalene (DAN) donors and naphthalene‐diimide (NDI) acceptors due the cooperative effects of hydrogen bonding, charge‐transfer (CT) interactions, and solvophobic effects. A series of DAN as well as NDI building blocks have been examined (wherein the relative distance between the two amide groups in a particular chromophore is the variable structural parameter) to understand the structure‐dependent variation in mode of supramolecular assembly and morphology (organogel, reverse vesicle, etc.) of the self‐assembled material. Interestingly, it was observed that when the amide functionalities are introduced to enhance the self‐assembly propensity, the mode of co‐assembly among the DAN and NDI chromophores no longer remained trivial and was dictated by a relatively stronger hydrogen‐bonding interaction instead of a weak CT interaction. Consequently, in a highly non‐polar solvent like methylcyclohexane (MCH), although kinetically controlled CT‐gelation was initially noticed, within a few hours the system sacrificed the CT‐interaction and switched over to the more stable self‐sorted gel to maximize the gain in enthalpy from the hydrogen‐bonding interaction. In contrast, in a relatively less non‐polar solvent such as tetrachloroethylene (TCE), in which the strength of hydrogen bonding is inherently weak, the contribution of the CT interaction also had to be accounted for along with hydrogen bonding leading to a stable CT‐state in the gel or solution phase. The stability and morphology of the CT complex and rate of supramolecular switching (from CT to segregated state) were found to be greatly influenced by subtle structural variation of the building blocks, solvent polarity, and the DAN/NDI ratio. For example, in a given D–A pair, by introducing just one methylene unit in the spacer segment of either of the building blocks a complete change in the mode of co‐assembly (CT state or segregated state) and the morphology (1D fiber to 2D reverse vesicle) was observed. The role of solvent polarity, structural variation, and D/A ratio on the nature of co‐assembly, morphology, and the unprecedented supramolecular‐switching phenomenon have been studied by detail spectroscopic and microscopic experiments in a gel as well as in the solution state and are well supported by DFT calculations.  相似文献   

13.
An effective supramolecular strategy for self-sorting between naphthalene-diimide (NDI) acceptor and dialkoxy-naphthalene (DAN) donor organogelators is reported. The concept is based on mismatch in the placement of the two amide functionalities in the donor and acceptor chromophores so that self-sorting ensured maximum effect of H-bonding.  相似文献   

14.
The Michael addition of hydrazide signal amplifiers to short-lived orthoquinone analytes is introduced as a new method to contribute toward the discrimination of polyphenols (e.g. epigallocatechin gallate, resveratrol) with synthetic pores.  相似文献   

15.
1,5‐diaminonaphthalene (DAN) has previously been reported as an effective matrix for matrix‐assisted laser desorption ionization‐mass spectrometry of phospholipids. In the current work, we investigate the use of DAN as a matrix for small metabolite analysis in negative ion mode. DAN was found to provide superior ionization to the compared matrices for MW < ~400 Da; however, 9‐aminoacridine (9‐AA) was found to be superior for a uridine diphosphate standard (MW 566 Da). DAN was also found to provide a more representative profile of a natural phospholipid mixture than 9‐AA. Finally, DAN and 9‐AA were applied for imaging of metabolites directly from corn leaf sections. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

16.
The effects of ion force field polarizability on the interfacial electrostatic properties of approximately 1 M aqueous solutions of NaCl, CsCl, and NaI are investigated using molecular dynamics simulations employing both nonpolarizable and Drude-polarizable ion sets. Differences in computed depth-dependent orientational distributions, "permanent" and induced dipole and quadrupole moment profiles, and interfacial potentials are obtained for both ion sets to further elucidate how ion polarizability affects interfacial electrostatic properties among the various salts relative to pure water. We observe that the orientations and induced dipoles of water molecules are more strongly perturbed in the presence of polarizable ions via a stronger ionic double layer effect arising from greater charge separation. Both anions and cations exhibit enhanced induced dipole moments and strong z alignment in the vicinity of the Gibbs dividing surface (GDS) with the magnitude of the anion induced dipoles being nearly an order of magnitude larger than those of the cations and directed into the vapor phase. Depth-dependent profiles for the trace and z z components of the water molecular quadrupole moment tensors reveal 40% larger quadrupole moments in the bulk phase relative to the vapor which mimics a similar observed 40% increase in the average water dipole moment. Across the GDS, the water molecular quadrupole moments increase nonmonotonically (in contrast to the water dipoles) and exhibit a locally reduced contribution just below the surface due to both orientational and polarization effects. Computed interfacial potentials for the nonpolarizable salts yield values 20-60 mV more positive than pure water and increase by an additional 30-100 mV when ion polarizability is included. A rigorous decomposition of the total interfacial potential into ion monopole, water and ion dipole, and water quadrupole components reveals that a very strong, positive ion monopole contribution is offset by negative contributions from all other potential sources. Water quadrupole components modulated by the water density contribute significantly to the observed interfacial potential increments and almost entirely explain observed differences in the interfacial potentials for the two chloride salts. By lumping all remaining nonquadrupole interfacial potential contributions into a single "effective" dipole potential, we observe that the ratio of quadrupole to "effective" dipole contributions range from 2:1 in CsCl to 1:1.5 in NaI, suggesting that both contributions are comparably important in determining the interfacial potential increments. We also find that oscillations in the quadrupole potential in the double layer region are opposite in sign and partially cancel those of the "effective" dipole potential.  相似文献   

17.
The molecular recognition properties of calixarenes to 2,3-diaminonaphthalene (DAN) were investigated. We found that the fluorescence emission of DAN has a blue shift after p-sulfonic sodium calix[4]arece (SSCA) was added to DAN. The proposed mechanism of the molecular recognition between SSCA and DAN indicates that DAN goes into the cavity of SSCA with the help of the hydrogen bonding between the amino group of DAN and sulphonyl group of SSCA. The inclusion ratios and inclusion constants of the host-guest complexes are determined by using the deduced equations.  相似文献   

18.
Supramolecular induction of chirality to a π-stacked dialkoxynaphthalene (DAN)-fiber (made of achiral building blocks) from a neighbouring helical naphthalenediimide (NDI)-fiber is reported. CD-studies helped in understanding the nature of co-assembly in the donor-acceptor chromophore mixture from molecular to macroscopic scale.  相似文献   

19.
Areal distribution functions of double and triple pores and their first moments were obtained within the framework of the statistical model of overlapping nuclear track pores (circular holes of equal diameter on the flat surface of a track membrane). The linear dimensions of multiple pores with reference to their configuration forms (for triplets) and their dependence of on membrane porosity were calculated.  相似文献   

20.
Shape-persistent oligo-p-phenylene-N,N-naphthalenediimide (O-NDI) rods are introduced as anion-pi slides for chloride-selective multiion hopping across lipid bilayers. Results from end-group engineering and covalent capture as O-NDI hairpins suggested that self-assembly into transmembrane O-NDI bundles is essential for activity. A halide topology VI (Cl > F > Br approximately I, Cl/Br approximately Cl/I > 7) implied strong anion binding along the anion-pi slides with relatively weak contributions from size exclusion (F >or= OAc). Anomalous mole fraction effects (AMFE) supported the occurrence of multiion hopping along the pi-acidic O-NDI rods. The existence of anion-pi interactions was corroborated by high-level ab initio and DFT calculations. The latter revealed positive NDI quadrupole moments far beyond the hexafluorobenzene standard. Computational studies further suggested that anion binding occurs at the confined, pi-acidic edges of the sticky NDI surface and is influenced by the nature of the phenyl spacer between two NDIs. With regard to methods development, a detailed analysis of the detection of ion selectivity with the HPTS assay including AMFE in vesicles is provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号