首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 648 毫秒
1.
The self-assembly of a series of hexadehydrotribenzo[12]annulene (DBA) derivatives has been investigated by scanning tunneling microscopy (STM) at the liquid/solid interface in the absence and presence of nanographene guests. In the absence of appropriate guest molecules, DBA derivatives with short alkoxy chains form two-dimensional (2D) porous honeycomb type patterns, whereas those with long alkoxy chains form predominantly dense-packed linear type patterns. Added nanographene molecules adsorb in the pores of the existing 2D porous honeycomb type patterns or, more interestingly, they even convert the guest-free dense-packed linear-type patterns into guest-containing 2D porous honeycomb type patterns. For the DBA derivative with the longest alkoxy chains (OC20H41), the pore size, which depends on the length of the alkoxy chains, reaches 5.4 nm. Up to a maximum of six nanographene molecules can be hosted in the same cavity for the DBA derivative with the OC20H41 chains. The host matrix changes its structure in order to accommodate the adsorption of the guest clusters. This flexibility arises from the weak intermolecular interactions between interdigitating alkoxy chains holding the honeycomb structure together. Diverse dynamic processes have been observed at the level of the host matrix and the coadsorbed guest molecules.  相似文献   

2.
The synthesis of 1,4-bis(2-naphthyl)-1,3-butadiynes, containing terminal alkoxy chains, is reported. The mesomorphism of these compounds has been characterized by differential scanning calorimetry and polarizing optical microscopy. The introduction of terminal alkoxy chains, significantly lowers the melting temperature of the analogous core without terminal chains. The induction of a smectic phase occurred when two decyloxy chains were attached. The solid state structures and packing arrangements of the butyloxy derivative and the chainless core were determined by single crystal X-ray diffraction, and revealed greater layer interpenetration for the substituted material.  相似文献   

3.
The self-assembly of three porphyrin derivatives was studied in detail on a Cu(111) substrate by means of scanning tunneling microscopy (STM). All derivatives have two 4-cyanophenyl substituents in diagonally opposed meso-positions of the porphyrin core, but differ in the nature of the other two meso-alkoxyphenyl substituents. At coverages below 0.8 monolayers, two derivatives form molecular chains, which evolve into nanoporous networks at higher coverages. The third derivative self-assembles directly into a nanoporous network without showing a one-dimensional phase. The pore-to-pore distances for the three networks depend on the size and shape of the alkoxy substituents. All observed effects are explained by 1) different steric demands of the alkoxy residues, 2) apolar (mainly dispersion) interactions between the alkoxy chains, 3) polar bonding involving both cyanophenyl and alkoxyphenyl substituents, and 4) the entropy/enthalpy balance of the network formation.  相似文献   

4.
The 1,6,7,12,13,18‐hexaazatrinaphthylene (HATN) complex [(Et2Zn)33‐HATN)] was synthesized and characterized by IR spectroscopy, UV/Vis spectroscopy, elemental analysis and ESI‐MS spectrometry. Attempts to prepare ZnCl2 complexes of HATN leads only to the mononuclear [(Cl2Zn)(HATN)] derivative, characterized by X‐ray diffraction, IR‐ and UV/Vis‐spectroscopy as well as ESI‐MS spectrometry. The bright red 2,2′‐bipyridine (bipy) complex [(Et2Zn)(bipy)] ( 1 ) was synthesized and characterized by X‐ray diffraction and NMR spectroscopy. The UV/Vis‐spectra of the HATN‐complexes show absorptions in regions of far longer wavelengths than the corresponding 2,2′‐bipyridine or 1,10‐phenantroline complexes. Consequently the π*‐LUMO of HATN ( 5 ) is lower in energy than the π*‐LUMO of 2,2′‐bipyridine ( 2 ) or 1,10‐phenanthroline (phen).  相似文献   

5.
A two‐dimensional (2D) sp2‐carbon‐linked conjugated polymer framework (2D CCP‐HATN) has a nitrogen‐doped skeleton, a periodical dual‐pore structure and high chemical stability. The polymer backbone consists of hexaazatrinaphthalene (HATN) and cyanovinylene units linked entirely by carbon–carbon double bonds. Profiting from the shape‐persistent framework of 2D CCP‐HATN integrated with the electrochemical redox‐active HATN and the robust sp2 carbon‐carbon linkage, 2D CCP‐HATN hybridized with carbon nanotubes shows a high capacity of 116 mA h g?1, with high utilization of its redox‐active sites and superb cycling stability (91 % after 1000 cycles) and rate capability (82 %, 1.0 A g?1 vs. 0.1 A g?1) as an organic cathode material for lithium‐ion batteries.  相似文献   

6.
The liquid crystalline properties of a series of 4-alkoxyphenyl beta -D-glucopyranosides (methoxy to decyloxy and dodecyloxy) were studied using polarized light microscopy and differential scanning calorimetry. The compounds with the shortest alkoxy substituents are not liquid crystalline. The butoxy derivative displays a monotropic smectic A phase and the higher homologues display enantiotropic smectic A phases. The lyotropic behaviour was studied as a function of concentration and temperature. Hexagonal, cubic and lamellar phases were observed for compounds with alkoxy chains longer than butoxy. The nonyloxy derivative forms long ribbons in dilute solution as revealed by electron microscopy.  相似文献   

7.
In this contribution the first examples of so‐called rigid‐core, T‐shaped imidazolium ionic liquid crystals, in which the C‐2 atom of the imidazolium ring is substituted with an aryl moiety decorated with one or two alkoxy chains, are described. The length of the alkoxy chain(s) was varied from six to eighteen carbon atoms (n=6, 10, 14–18). Whereas the compounds with one long alkoxy chain display only smectic A phases, the salts containing two alkoxy chains exhibit smectic A, multicontinuous cubic, as well as hexagonal columnar phases, as evidenced by polarising optical microscopy, differential scanning calorimetry, and powder X‐ray diffraction. Structural models are proposed for the self‐assembly of the molecules within the mesophases. The imidazolium head groups and the iodide counterions were found to adopt a peculiar orientation in the central part of the columns of the hexagonal columnar phases. The enantiotropic cubic phase shown by the 1,3‐dimethyl‐2‐[3,4‐bis(pentadecyloxy)phenyl]imidazolium iodide salt has a multicontinuous Pm$\bar 3In this contribution the first examples of so-called rigid-core, T-shaped imidazolium ionic liquid crystals, in which the C-2 atom of the imidazolium ring is substituted with an aryl moiety decorated with one or two alkoxy chains, are described. The length of the alkoxy chain(s) was varied from six to eighteen carbon atoms (n=6, 10, 14-18). Whereas the compounds with one long alkoxy chain display only smectic A phases, the salts containing two alkoxy chains exhibit smectic A, multicontinuous cubic, as well as hexagonal columnar phases, as evidenced by polarising optical microscopy, differential scanning calorimetry, and powder X-ray diffraction. Structural models are proposed for the self-assembly of the molecules within the mesophases. The imidazolium head groups and the iodide counterions were found to adopt a peculiar orientation in the central part of the columns of the hexagonal columnar phases. The enantiotropic cubic phase shown by the 1,3-dimethyl-2-[3,4-bis(pentadecyloxy)phenyl]imidazolium iodide salt has a multicontinuous Pm ?3m structure. To the best of our knowledge, this is the first example of a thermotropic cubic mesophase of this symmetry.  相似文献   

8.
A systematic study of the mesomorphic properties of three series of copper(II) complexes based on β-diketonate ligands containing branched side chains is reported. These disc-like compounds have four, six and eight flexible alkoxy side chains appended to the central core, in which two or four side chains were substituted by bulkier secondary alkoxy groups: 1-methylbutyloxy R ' = C5(2°) or 1-methylheptyloxy R ' = C8(2°). The mesomorphic results indicated that at least eight side chains are required to form stable columnar mesophases; other compounds with four or six side chains are not mesogenic regardless of the combination of the carbon length on the alkoxy or secondary alkoxy groups of the side chains. The compounds 3 with shorter R ' = C5(2°) side chains were all non-mesogenic regardless of the carbon length of three alkoxy side chains (R = C8, C10, C12) used. However, when the longer 1-methylheptyloxy side chain R ' = C8(2°) was substituted, the compounds 3b-3e with various alkoxy groups (R = C6, C7, C8, C10, C12) exhibited columnar phases. The mesophases were characterized and identified as columnar hexagonal phases (Colh), as expected, by thermal analysis and optical polarized microscopy. The presence of the introduced secondary alkoxy groups apparently appeared to influence the formation of columnar phases. The clearing points were relatively lower than other similar copper(II) compounds not substituted by secondary alkoxy side chains.  相似文献   

9.
The preparation and mesogenic properties of a series of discotic β-diketonate metal complexes are reported. The results show that the density of side chains, positions of side chains, and the geometries of the metal centers play important roles in determining the mesomorphic behaviors and thermodynamic stability of these complexes. In the series of copper complexes 3, all these disc-like molecules with eight alkoxy side chains exhibit columnar hexagonal disordered (Dhd) mesophases. In the series of copper complexes 2 with six side chains, only compounds substituted with longer alkoxy chains (n = C14 or C16) exhibit discotic columnar mesophase. However, in the series of complexes 1, only crystal-to-isotropic transitions were observed. The results showed that induction of liquid crystallinity not only depends on the numbers of side chains (i.e. side chain density), but also on the degree of distribution over the central core. Palladium complexes analogs exhibit similar discotic mesophases, and due to their greater core-core organization, they also have higher clearing points and wider temperature range of mesophases than copper complexes.  相似文献   

10.
Novel columnar liquid crystals whose molecular structures consist of a C3 star-shaped 1,3,5-triazine unit as a central core, and three pendant 2-phenyl-5-(di-, and/or tri-n-alkoxyphenyl)-1,3,4-thiadiazole arms, containing ether connecting groups, variable number and positions of linear alkoxy chains were synthesised and their mesomorphic properties were studied by differential scanning calorimetry, polarised optical microscopy and X-ray diffraction. The mesomorphic properties were found to be dependent on the length, position and number of the peripheral alkoxy chains. Most compounds form enantiotropic hexagonal columnar phases. These compounds also show photoluminescent properties in the visible region with good quantum yields. Photophysical studies were realised in solution and in solid state. Also, solvatofluorochromism and cyclic voltammetry studies were performed.  相似文献   

11.
The new mononuclear and dinuclear tricarbonylrhenium(I) complexes [(HATN)Re(CO)(3)Cl] (1-Cl) and [(μ-Me(6)-HATN)[Re(CO)(3)Cl](2)] (2-Cl(2)) of highly symmetric ligands HATN and Me(6)-HATN were synthesized and structurally characterized. X-Ray crystal structures reveal identical strained aromatic systems and out of the plane fac-Re(CO)(3)Cl units for both complexes. The packing geometry in the unit cell of 1 suggests intermolecular π-π association. Infrared spectroelectrochemistry (SEC) experiments confirmed ligand-based reductions. To get more insight into the reduction mechanism the triflate salts, [(HATN)Re(CO)(3)](OTf) (1-OTf) and [(μ-Me(6)HATN){Re(CO)(3)}(2)](OTf)(2) (2-OTf(2)), were synthesized. Their electrochemical and spectroelectrochemical behavior also exhibits reduction of the aromatic systems. The electronic absorption spectral features of the one electron reduced species were studied by UV-vis-NIR spectroscopy, which shows a broad shoulder at 1500 nm, confirming intra-ligand charge transfer (ILCT). Density functional theory (DFT) calculations on the complexes 1-Cl and 2-Cl(2) for structural optimization show good agreement with experimental bond lengths and bond angles. The spin density plot shows a metal based HOMO and HATN ligand centered LUMO.  相似文献   

12.
The synthesis of some aryl β-D-C-glycosides bearing long alkoxy chains (grafted on the carbohydrate moiety through the intermediate of an aromatic core) is described. Their mesomorphic properties (studied by microscopic observations under polarized light, DSC and X-ray diffraction) are presented.  相似文献   

13.
《Liquid crystals》2012,39(15):2291-2300
ABSTRACT

A series of new asymmetrical liquid crystal dimers, RnO–S2O–ORn (n = 2–10), linked by an ethylene spacer having carbothiol – COS – and carboxyl – COO – linkages to the core centre of the molecule and bearing different lengths of terminal alkoxy chains were synthesised in order to study the effects of the length of the terminal alkoxy chains on mesomorphic properties. As well as, five symmetrical and asymmetrical dimers linked by butylene spacers bearing different linkages to the core and various terminal chains were also synthesized in order to study the effect of the nature of the spacer and terminal groups. The structures of the synthesised dimers were confirmed by physico-chemical techniques, i.e. FTIR, NMR and mass spectra. Differential scanning calorimetry and polarising optical microscopy verified the liquid crystal behaviour transition temperatures. The isotropic transition temperatures of the dimers RnO–S2O–ORn (n = 2–10) decreased with increasing length of alkoxy chain. Structural effects on the mesomorphic and physical properties were investigated in terms of alteration of carboxylate and thioester groups linking the spacer. The mesomorphic investigation reveals that all the dimers formed an enantiotropic Nematic phase except for dimer HO2SH which is not a liquid crystal.  相似文献   

14.
Phase diagrams of binary mixtures of the non-mesogenic N -( p -methoxy- o -hydroxybenzylidbe ene)- p -aminopyridine with a series of p - n -alkoxybenzoic acids ranging from methoxy to hexadecyloxy were established using differential scanning calorimetry and polarising optical microscopy. The key results obtained are: (1) the formation of 1 1 hydrogen bonded complexes between the pyridine derivative and the alkoxybenzoic acids, (2) the stability of the alkoxybenzoic acid mesophases over a wide range of compositions (up to slightly over 50 mol% of the pyridine derivative), (3) the absence of additional mesophases corresponding specifically to the 1 1 complexes, and (4) the complete miscibility of the acids with the complexes in the mesomorphic state. With alkoxy chains from methoxy to heptyloxy, mixtures produce only nematic phases; they produce both nematic and smectic phases with chains from octyloxy to dodecyloxy, and only smectic phases with chains from tetradecyloxy to hexadecyloxy. The formation of hydrogen bonded complexes was investigated at various temperatures using FTIR spectroscopy. Molecular ordering was studied by X-ray diffraction as a function of temperature and composition both for the crystalline and the mesomorphic states.  相似文献   

15.
We report the spontaneous coupling of N-heterocycles, initiated by C-H bond activation reactions. The reaction of quinoxalines and the titanocene acetylene complex Cp2Ti{eta2-C2(SiMe3)2}, as an excellent titanocene source, results in the formation of trinuclear 1,6,7,12,13,18-hexaazatrinaphthylene (HATN) titanium complexes. These HATN titanium complexes are thermally stable but sensitive to air and moisture. A three-fold dehydrogenative C-C coupling is proposed as the main step in the presented synthetic procedure. Particularly using commercial starting materials, an efficient route for the dehydrogenative coupling of N-heterocycles, leading to multidentate ligands, has been established.  相似文献   

16.
Heat capacity measurements have been made on ANBC(18) at temperatures from 8 to 490 K by adiabatic calorimetry. All known phases were detected. The temperatures, enthalpies and entropies of transition were determined for the phase transitions observed. On the basis of the entropy of transition to the SmC phase from the D or cubic phases, it is pointed out that the D phase of ANBC and the cubic phase of BABH might be identical in nature. It is shown that the arrangement of 'molecular' cores has a higher degree of order in the isotropic (D and cubic) phases than in the SmC phase, whereas the terminal alkoxy chains are more disordered in the isotropic phases than in the SmC phase. The degrees of disorder in the D and cubic phases relative to the SmC phase are very similar in terms of the entropy of transition per methylene group. The inverted phase sequence in ANBC (SmC D on heating) and BABH (cubic SmC) can be accounted for in terms of the competing roles in the entropy between the molecular core and the chains.  相似文献   

17.
Tetradental cis-enaminoketone Ni (II) complexes with different molecular shape have been synthesized. Intramolecular hydrogen bonds, which stiffen the mesogenic core and restrict rotation of some molecular parts, have been introduced in these compounds. In the case of molecules with two hydrogen bonds and alkoxy terminal chains filling the inner molecular space, the uncommon phase sequence Iso-D(h)-Iso(re)-SmA (series III-3) was detected. For the first time, it was observed that the isotropic re-entrant (Iso(re)) phase (short-range order) is separating the columnar (D) (high-temperature) and the lamellar (SmA) (low-temperature) phases, both revealing long-range ordered structures.  相似文献   

18.
Multinuclear transition metal complexes bridged by ligands with extended π-electronic systems show a variety of complex electronic transitions and electron transfer reactions. While a systematic understanding of the photochemistry and electrochemistry has been attained for binuclear complexes, much less is known about trinuclear complexes such as hexaphenyl-5,6,11,12,17,18-hexaazatrinaphthylene-tristitanocene [(Cp2Ti)3HATN(Ph)6]. The voltammogram of [(Cp2Ti)3HATN(Ph)6] shows six oxidation and three reduction waves. Solution spectra of [(Cp2Ti)3HATN(Ph)6] and of the electrochemically formed oxidation products show electronic transitions in the UV, visible and the NIR ranges. Density functional theory (DFT) and linear response time-dependent DFT show that the three formally titanium(II) centers transfer an electron to the HATN ligand in the ground state. The optically excited transitions occur exclusively between ligand-centered orbitals. The charged titanium centers only provide an electrostatic frame to the extended π-electronic system. Complete active self-consistent field (CASSCF) calculation on a structurally simplified model compound, which considers the multi-reference character imposed by the three titanium centers, can provide an interpretation of the experimentally observed temperature-dependent magnetic behavior of the different redox states of the title compound in full consistency with the interpretation of the electronic spectra.  相似文献   

19.
Abstract

Studies of 5,10,15,20-tetrakis(4-n-alkylphenyl)porphyrins revealed that the homologues with longer alkyl chains than hexyl were mesomorphic, in contrast to the non-mesomorphic alkoxy derivatives. Metal complexes (Co, Ni, Cu, Zn, and Pd) of the dodecyl derivative were also shown to exhibit mesophases. These mesophases were assigned as discotic lamellar (DL) phases by X-ray diffraction studies.  相似文献   

20.
Lanthanide bisphthalocyanine complexes are interesting objects for the construction of two-dimensional (2D) ordered arrays with prospective applications in molecular electronics due to their unique semiconductor and electrochromic properties as well as their double-decker architecture. The 2D self-assembly of dodecyloxy-substituted (bisphthalocyaninato)erbium(III) has been studied at the solid (highly oriented pyrolytic graphite)-liquid interface by scanning tunneling microscopy. The results show that the bisphthalocyanine molecules form an ordered quadratic 2D lattice (a = b = 3.0 +/- 0.1 nm, gamma = 90 +/- 3 degrees), which is nearly identical to that formed by its (phthalocyaninato)cobalt(II) analogue bearing alkoxy chains of the same length. This clearly shows that sandwich molecules adsorb to the graphite surface by one of the phthalocyanine disks and its eight alkoxy groups. Despite the very similar mode of interaction with the surface, mixtures of alkoxylated (bisphthalocyaninato)erbium(III) with its (phthalocyaninato)cobalt(II) analogue show partial phase separation on the nanoscale: areas are enriched in one of the compounds. A much clearer phase separation between (bisphthalocyaninato)erbium(III) and (phthalocyaninato)cobalt(II) molecules was achieved by mixing molecules containing alkoxy groups of different length. The results provide insight for the development of well-ordered nanostructures of bisphthalocyanines in the presence of phthalocyanines, which could be of importance for future nanometer-scale functional materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号