首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transient response of a non-Newtonian power-law fluid to several assumed forms of pressure pulse in a circular tube is analysed by the semi-direct variational method of Kanntovorich. Velocity profiles are shown for several power-law indices, and by comparing the results for the Newtonian case with the exact solution given by Szymanski, it is observed that the results are good to 5%. More accurate solutions have been found for the case involving Newtonian fluid flow. New results are reported concerning the effect of a triangular pressure pulse on the development and transient response of the flow field of a non-Newtonian fluid.  相似文献   

2.
In this paper, the mathematical problem of weak non-Newtonian fluid two-phase flow through porous media, including the effect of capillary pressure, is solved by singular perturbation method in combination with regular perturbation method. The asymptotic analytical solutions of the fractional flow function and the wetting phase saturation are obtained. The results are verified by numerical calculations and by classical solutions for corresponding Newtonian case. The influences of the non-Newtonian exponent and capillary pressure are discussed.  相似文献   

3.
An incompressible smoothed particle hydrodynamics (ISPH) method is developed for the modeling of multiphase Newtonian and inelastic non-Newtonian flows at low density ratios. This new method is the multiphase extension of Xenakis et al, J. Non-Newtonian Fluid Mech., 218, 1-15, which has been shown to be stable and accurate, with a virtually noise-free pressure field for single-phase non-Newtonian flows. For the validation of the method a semi-analytical solution of a two-phase Newtonian/non-Newtonian (inelastic) Poiseuille flow is derived. The developed method is also compared with the benchmark multiphase case of the Rayleigh Taylor instability and a submarine landslide, thereby demonstrating capability in both Newtonian/Newtonian and Newtonian/non-Newtonian two-phase applications. Comparisons with analytical solutions, experimental and previously published results are conducted and show that the proposed methodology can accurately predict the free-surface and interface profiles of complex incompressible multi-phase flows at low-density ratios relevant, for example, to geophysical environmental applications.  相似文献   

4.
Criteria are established for higher order ordinary differential equations to be compatible with lower order ordinary differential equations. Necessary and sufficient compatibility conditions are derived which can be used to construct exact solutions of higher order ordinary differential equations subject to lower order equations. We provide the connection to generalized groups through conditional symmetries. Using this approach of compatibility and generalized groups, new exact solutions of non-linear flow problems arising in the study of Newtonian and non-Newtonian fluids are derived. The ansatz approach for obtaining exact solutions for non-linear flow models of Newtonian and non-Newtonian fluids is unified with the application of the compatibility and generalized group criteria.  相似文献   

5.
Non-Newtonian effects in a channel with moving wall indentations are assessed numerically by a finite volume method for solving the unsteady incompressible Navier-Stokes equations and using a power-law model exhibiting shear thinning viscosity and Casson's model as the constitutive equations for the non-Newtonian fluid. The computations show that for a non-Newtonian fluid, there are differences in the velocity profiles and in the structure and size of the reversed flow regions as compared with the corresponding Newtonian fluid. The comparison of non-Newtonian and Newtonian wall shear stress reveals a slight decrease in the magnitude on the average for the non-Newtonian case, eventually resulting in the strength of the “wave train” being slightly weaker than those corresponding to a Newtonian fluid.  相似文献   

6.
Mohyuddin  M. R.  Hayat  T.  Mahomed  F. M.  Asghar  S.  Siddiqui  A. M. 《Nonlinear dynamics》2004,35(3):229-248
Some steady as well as unsteady solutions of the equations of motion for an incompressible Newtonian and non-Newtonian (second-grade) fluids are obtained by applying different methods including the Lie symmetry group method. The flows considered are axially symmetric with the swirling motion, and the governing equations for second-grade fluid flow have been modeled. Expressions for streamlines, velocity and vorticity components are constructed explicitly in each case. Exact analytical solutions in second-grade fluid are obtained and compared with the corresponding viscous solutions.  相似文献   

7.
This paper considers the problem of non-Newtonian oil displa-cement by water in porous media.adopting the linear permea-tion law with initial pressure gradient.For one-dimensionalflow,the basic equation of non-Newtonian oil displacement bywater in sandstone reservoirs and fractured reservoirs is de-rived and numerical solutions are obtained.The results arecompared with the corresponding ones for Newtonian oil dis-placement to show the essential characteristics of non-Newto-nian oil displacement by water.  相似文献   

8.
This work focuses on the comparison between Newtonian and non-Newtonian blood flows through a bileaflet mechanical heart valve in the aortic root. The blood, in fact, is a concentrated suspension of cells, mainly red blood cells, in a Newtonian matrix, the plasma, and consequently its overall behavior is that of a non-Newtonian fluid owing to the action of the cells’ membrane on the fluid part. The common practice, however, assumes the blood in large vessels as a Newtonian fluid since the shear rate is generally high and the effective viscosity becomes independent of the former. In this paper, we show that this is not always the case even in the aorta, the largest artery of the systemic circulation, owing to the pulsatile and transitional nature of the flow. Unexpectedly, for most of the pulsating cycle and in a large part of the fluid volume, the shear rate is smaller than the threshold level for the blood to display a constant effective viscosity and its shear thinning character might affect the system dynamics. A direct inspection of the various flow features has shown that the valve dynamics, the transvalvular pressure drop and the large-scale features of the flow are very similar for the Newtonian and non-Newtonian fluid models. On the other hand, the mechanical damage of the red blood cells (hemolysis), induced by the altered stress values in the flow, is larger for the non-Newtonian fluid model than for the Newtonian one.  相似文献   

9.
Few boundary-value problems in fluid mechanics can match the attention that has been accorded to the flow of fluids, Newtonian and non-Newtonian, between parallel rotating disks rotating about a common axis or about distinct axes. An interesting feature which has been recently observed is the existence of solutions that are not axially symmetric even in the case of flow due to the rotation of disks about a common axis. In this article we review the recent efforts that have been expended in the study of both symmetric and asymmetric solutions in the case of both the classical linearly viscous fluid and viscoelastic fluids.The support of the Air Force Office of Scientific Research is gratefully acknowledged.  相似文献   

10.
For Newtonian fluids, the engineering predictions for pressure drop in turbulent pipe flow are well established. However, in the case of non-Newtonian liquids, only a few design techniques have been proposed and these do not share a common basis with the approach for Newtonian systems. This present work attempts to provide a common basis for both Newtonian and non-Newtonian systems in situations where anomalous wall effects are absent. Previously published experimental data suggest that if the Reynolds number is calculated on the basis of the apparent viscosity at the wall then the standard Newtonian correlations can be used for the prediction of pressure drop. The use of the wall viscosity in defining the Reynolds number also serves as a test for anomalous behaviour. Any departure of the experimental data from the Newtonian turbulent friction factor correlation indicates anomalous behaviour.  相似文献   

11.
An experimental investigation has been undertaken to understand the phase split of nitrogen gas/non-Newtonian liquid two-phase flow passing through a 0.5 mm T-junction that oriented horizontally. Four different liquids, including water and aqueous solutions of carboxymethyl cellulose (CMC) with different mass concentrations of 0.1, 0.2 and 0.3 wt%, were employed. Rheology experiments showed that different from water, CMC solutions in this study are pseudoplastic non-Newtonian fluid whose viscosity decreases with increasing the shear rate. The inlet flow patterns were observed to be slug flow, slug–annular flow and annular flow. The fraction of liquid taken off at the side arm for nitrogen gas/non-Newtonian liquid systems is found to be higher than that for nitrogen gas/Newtonian liquid systems in all inlet flow patterns. In addition, with increasing the pseudoplasticity of the liquid phase, the side arm liquid taken off increases, but the increasing degree varies with each flow pattern. For annular flow, the increasing degree is much greater than those for slug and slug–annular flows.  相似文献   

12.
 Measurements of the mean and turbulent flow characteristics of shear-thinning moderately elastic 0.1% and 0.2% xanthan gum aqueous solutions were carried out in a sudden expansion having a diameter ratio of 2. The inlet flow was turbulent and fully developed, and the results were compared with data for water in the same geometry and with previous published Newtonian and non-Newtonian data in a smaller expansion of diameter ratio equal to 1.538. An increase in expansion ratio led to an increase in the recirculation length and in the axial normal Reynolds stress at identical normalised locations, but the difference between Newtonian and non-Newtonian characteristics was less intense than in the smaller expansion. An extensive comparison of mean and turbulent flow characteristics was carried out in order to understand the variation of flow features. Received: 31 July 2000 / Accepted: 27 August 2001  相似文献   

13.
Any experimental work on the flow of a polymer solution or any theoretical analysis on the basis of a visoelastic constitutive equation does not always bring out viscoelastic effects but may be showing a non-Newtonian viscosity effect. Therefore, in order to obtain a clear understanding about viscoelastic effects, it is desirable to have a sufficient knowledge of the non-Newtonian viscosity effect. To facilitate this, finite-difference numerical solutions of non-Newtonian flow were carried out using a non-Newtonian viscous model for the Reynolds numbers of 0.1, 1.0, 20 and 60.Drag force measurements and flow visualization experiments were also performed over a wide range of experimental conditions using polymer solutions. The present work appears to support the following idea: When compared with the Newtonian case on the basis of DVP0, where η0 is the zero shear viscosity, it is on account of the non-Newtonian viscosity that the friction and pressure drags decrease, that the separating vortices behind the sphere become larger, and that no shift occurs in the streamlines. On the other hand, it is due to viscoelasticity that the normal force drag increases, that the separating vortices behind the sphere become smaller, and that an upstream shift occurs in the streamlines.  相似文献   

14.
Summary Extended definition of a stress tensor for a non-Newtonian fluid brings in higher degree derivatives with coefficients as powers of non-Newtonian parameter in the differential equations of motion. Yet, these differential equations need to be solved subject to the same boundary conditions as in the corresponding Newtonian flow problem. A technique is developed to obtain exact solutions for such an extended boundary value problem. Some flow problems forWalters liquidB are considered.  相似文献   

15.
Experiments are described in which two cylinders of the same radii-rotate with identical speeds in a bath of Newtonian or non-Newtonian liquid. The torque on one of the cylinders is measured as a function of rotational speed for various values of the cylinder separation and the flow patterns are observed by a dye-injection technique.The observed experimental results for a Newtonian liquid correlate well with the theoretical predictions but a similar correlation in the case of elastic liquids is made difficult by the strongly three-dimensional nature of the flow in this case and the difficulty in estimating the amount of liquid passing through the rollers. The possibility of flow reversal effects due to the high Trouton ratios in the case of the elastic liquids is investigated both experimentally and theoretically.  相似文献   

16.
Pulsed field gradient nuclear magnetic resonance (PFG-NMR) is used to measure the molecular displacements for the flow of a fluid through a capillary tube and a packed bed made of monodisperse PMMA beads. The molecules average displacement is studied using both the formalism of propagators and the cumulant method. In the Poiseuille case, the dispersion coefficients determined by the cumulant method compare satisfactorily with the theoretical values obtained. The technique is then extended to study the flow through a porous medium. We thus analyze Newtonian (water) and non-Newtonian (Xanthan) flows and put a particular emphasis on comparing the dispersion mechanisms between Newtonian and non-Newtonian fluids.  相似文献   

17.
Turbulent characteristics of shear-thinning fluids in recirculating flows   总被引:1,自引:0,他引:1  
 A miniaturised fibre optic Laser-Doppler anemometer was used to carry out a detailed hydrodynamic investigation of the flow downstream of a sudden expansion with 0.1–0.2% by weight shear-thinning aqueous solutions of xanthan gum. Upstream of the sudden expansion the pipe flow was fully-developed and the xanthan gum solutions exhibited drag reduction with corresponding lower radial and tangential normal Reynolds stresses, but higher axial Reynolds stress near the wall and a flatter axial mean velocity profile in comparison with Newtonian flow. The recirculation bubble length was reduced by more than 20% relative to the high Reynolds number Newtonian flow, and this was attributed to the occurrence further upstream of high turbulence for the non-Newtonian solutions, because of advection of turbulence and earlier high turbulence production in the shear layer. Comparisons with the measurements of Escudier and Smith (1999) with similar fluids emphasized the dominating role of inlet turbulence. The present downstream turbulence field was less anisotropic, and had lower maximum axial Reynolds stresses (by 16%) but higher radial turbulence (20%) than theirs. They reported considerably longer recirculating bubble lengths than we do for similar non-Newtonian fluids and Reynolds numbers. Received: 23 February 1999/Accepted: 28 April 1999  相似文献   

18.
Dilute polymer blends and immiscible liquid emulsions are characterized by a globular morphology. The dynamics of a single drop subjected to an imposed flow field has been considered to be a valuable model system to get information on dilute blends. This problem has been studied either theoretically by developing exact theories for small drop deformations or by developing simplified models often based on phenomenological assumptions. In this paper, a critical overview of the available models for the dynamics of a single drop is presented, discussing four different systems, namely the Newtonian system, where a single Newtonian drop is immersed in an infinite Newtonian matrix; the non-Newtonian system, where at least one of the components, the drop fluid or the matrix one, is non-Newtonian; the confined Newtonian system, where the matrix is confined and wall effects alter the drop dynamics; and the confined non-Newtonian system.  相似文献   

19.
The non-Darcy flow characteristics of power-law non-Newtonian fluids past a wedge embedded in a porous medium have been studied. The governing equations are converted to a system of first-order ordinary differential equations by means of a local similarity transformation and have been solved numerically, for a number of parameter combinations of wedge angle parameter m, power-law index of the non-Newtonian fluids n, first-order resistance A and second-order resistance B, using a fourth-order Runge–Kutta integration scheme with the Newton–Raphson shooting method. Velocity and shear stress at the body surface are presented for a range of the above parameters. These results are also compared with the corresponding flow problems for a Newtonian fluid. Numerical results show that for the case of the constant wedge angle and material parameter A, the local skin friction coefficient is lower for a dilatant fluid as compared with the pseudo-plastic or Newtonian fluids.  相似文献   

20.
The problem of peristaltic transport of a non-Newtonian (power-law) fluid in uniform and non-uniform two-dimensional channels has been investigated under zero Reynolds number with long wavelength approximation. A comparison of the results with those for a Newtonian fluid model shows that the magnitude of pressure rise, under a given set of conditions, is smaller in the case of the non-Newtonian fluid (power-law indexn < 1) at zero flow rate. Further, the pressure rise is smaller asn decreases from 1 at zero flow rate, is independent ofn at a certain value of flow rate and becomes greater if flow rate increases further. Also, at a given flow rate, an increase in wavelength leads to a decrease in pressure rise and increase in the influence of non-Newtonian behaviour. Pressure rise in the case of non-uniform geometry, is found to be much smaller than the corresponding value in the case of uniform geometry. Finally, the analysis is applied and compared with observed flow rates in the ductus efferentes of the male reproductive tract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号