首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new tetrahedral coordination cage M12L6 was prepared from a linear dipyrimidine ligand (L) and cis-protected palladium(II) (M). This cage showed unprecedented host-guest chemistry where the cationic host accommodated a cationic guest despite 24+ charges on the host framework. The unusual cation-cation host-guest chemistry is described by a unique onionlike shell structure of the host-guest complex where two cationic spheres are mediated by an anionic sphere of a counteranion assembly.  相似文献   

2.
This review supplied direct insight of host-guest molecule system by using COR as the guest molecule.  相似文献   

3.
《中国化学快报》2023,34(1):107085
Supramolecular chemistry has received considerable attention in host-guest recognition. The structure-response relationship of host-guest recognition system is a meaningful issue. Herein, a series of tripodal nitrogen mustard derivatives (TMs) have been developed in this paper. By rationally design the intramolecular alkyl chain lengths of host, the host-guest binding model have been successfully tuned, which underwent a transformation from π-π to multiple hydrogen bonds. This process enhances the host-guest binding force and recognition efficiency.  相似文献   

4.
Supramolecular liquid–crystalline polymeric complexes based on a backbone that contains vinyl pyridine units and azobenzene or biphenyl derivatives that posses alkyl chains terminated by carboxylic acid have been obtained by the formation of intermolecular hydrogen bonds between the carboxylic acid and the pyridyl moieties. The polymeric complexes behave as side-chain liquid–crystalline polymers and exhibit smectic phases. A new type of H-bonded host-guest liquid–crystalline system is also reported. The liquid–crystalline host copolymers contain both mesogenic acrylate and 4-vinylpyridine units. The guest molecule is an azobenzene that has a carboxylic acid moiety at one of its extremities. The H-bonded polymeric host–guest complexes exhibit nematic phases. Sequential UV and visible light irradiation of the polymeric complex causes reversible photochemically induced phase transitions. The isothermal nematic–isotropic and isotropic–nematic transitions result from the trans-cis and cis-trans photoisomerization of the guest azobenzene in the host–guest system. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
A hydrazide-derived bis(meta-phenylene)-32-crown-10 host showed a dimeric structure via quadruple N-H?O hydrogen bonds, but a polymeric structure via two N-H?O hydrogen bonds and two C-H?O hydrogen bonds at each knot in the presence of paraquat in the solid state, which led to a novel poly(taco complex) and ordering arrangement of the guest molecules indirectly.  相似文献   

6.
Host-guest interactions between the periphery of adamantylurea-functionalized dendrimers (host) and ureido acetic acid derivatives (guest) were shown to be specific, strong and spatially well-defined. The binding becomes stronger when using phosphonic or sulfonic acid derivatives. In the present work we have quantified the binding constants for the host-guest interactions between two different host motifs and six different guest molecules. The host molecules, which resemble the periphery of a poly(propylene imine) dendrimer, have been fitted with an anthracene-based fluorescent probe. The two host motifs differ in terms of the length of the spacer between a tertiary amine and two ureido functionalities. The guest molecules all contain an acidic moiety (either a carboxylic acid, a phosphonic acid, or a sulfonic acid) and three of them also contain an ureido moiety capable of forming multiple hydrogen bonds to the hosts. The binding constants for all 12 host-guest complexes have been determined by using fluorescence titrations by monitoring the increase in fluorescence of the host upon protonation by the addition of the guest. The binding constants could be tuned by changing the design of the acidic part of the guest. The formation of hydrogen bonds gives, in all cases, higher association constants, demonstrating that the host is more than a proton sensor. The host with the longer spacer (propyl) shows higher association constants than the host with the shorter spacer (ethyl). The gain in association constants are higher when the urea function is added to the guests for the host with the longer spacer, indicating a better fit. Collision-induced dissociation mass spectrometry (CID-MS) is used to study the stability of the six motifs using the corresponding third generation dendrimer. A similar trend is found when the six different guests are compared.  相似文献   

7.
《中国化学快报》2019,30(11):1927-1930
Two host-guest systems have been constructed,by employing structurally similar terpyridine platinum(Ⅱ) macrocycle and molecular tweezer as the synthetic receptors.The macrocycle/guest complex displays low-energy emission signal,reinforced non-covalent binding affinity,and enhanced photosensitization capability than those of the molecular tweezer/guest one.The discrepancy between macrocyclic and acyclic preorganization modes originates from the different numbers of Pt(Ⅱ)…Pt(Ⅱ) metal-metal bonds in host-guest complexation structures.  相似文献   

8.
环双(对-蒽基-对草快)的分子识别与谱学性质   总被引:1,自引:0,他引:1  
环双(对-蒽基-对草快)是一种新型的缺电子大环仿生主体, 分子识别是其最重要的应用之一. 考察主体对一系列客体分子如水、氨、醇及杂环等的识别能力, 用密度泛函理论(DFT)中的B3LYP/3-21G基组对主客体复合物的结构进行优化. 在B3LYP/6-31G(d)水平上进行单点能计算, 校正后得到复合物的结合能. 用B3LYP/3-21G方法计算13C和3He化学位移. 结果表明, 主体对客体分子的识别主要靠客体上的杂原子与主体上的氢原子之间的氢键进行. 复合物的稳定化能受氢键的数目和距离影响. 氢键的形成导致部分复合物LUMO与HOMO能隙增大, 同时导致与氢键相连的C—H键上C原子的化学位移向低场移动. 复合物的芳香性与其结合能的大小及结合方式有关. 主体的芳香性因其与客体之间的弱相互作用而提高, 但太强的相互作用及客体在主体空腔内都将影响主体的环电流, 从而削弱其芳香性.  相似文献   

9.
The complexation of phenol derivatives, aromatic carboxylic acids, and n-octylgalactopyranoside by hydrogen-bonded exo-receptors is described. The receptors are formed by self-assembly of differently functionalized calix[4]arene dimelamines with 5,5-diethyl barbiturate or butyl cyanurate. The multivalent complementary recognition site of the receptors is used very efficiently to complex multiple guests. A 1:6 binding mode was observed for phenol derivatives forming single hydrogen bonds with all six recognition sites of an ureido functionalized receptor assembly, while 1:3 complexation was observed for phenol derivatives which form two hydrogen bonds with two different ureido recognition sites of the same receptor. Aromatic carboxylic acids are complexed in a 1:6 ratio by receptors having six amino recognition sites. The complexation of n-octylgalactopyranoside by Gly-L-Ser functionalized receptors is also described, indicating that it is possible to use small peptidic fragments to complex biologically important molecules.  相似文献   

10.
cis-Diaminostilbene dihydrochloride encapsulated in cucurbit[7]uril does not spontaneously isomerize to the trans isomer at room temperature as a result of the strong host-guest interactions including strong hydrogen bonds between the two protonated amine termini of the C-shaped guest and the portal oxygen atoms of the host.  相似文献   

11.
Hydrogen storage from two independent sources of the same material represents a novel approach to the hydrogen storage problem, yielding storage capacities greater than either of the individual constituents. Here we report a novel hydrogen storage scheme in which recoverable hydrogen is stored molecularly within clathrate cavities as well as chemically in the clathrate host material. X-ray diffraction and Raman spectroscopic measurements confirm the formation of beta-hydroquinone (beta-HQ) clathrate with molecular hydrogen. Hydrogen within the beta-HQ clathrate vibrates at considerably lower frequency than hydrogen in the free gaseous phase and rotates nondegenerately with splitting comparable to the rotational constant. Compared with water-based clathrate hydrate phases, the beta-HQ+H2 clathrate shows remarkable stability over a range of p-T conditions. Subsequent to clathrate decomposition, the host HQ was used to directly power a PEM fuel cell. With one H2 molecule per cavity, 0.61 wt % hydrogen may be stored in the beta-HQ clathrate cavities. When this amount is combined with complete dehydrogenation of the host hydroxyl hydrogens, the maximum hydrogen storage capacity increases nearly 300% to 2.43 wt %.  相似文献   

12.
Acridinylresorcinol host 3 (9-(3,5-dihydroxy-1-phenyl)acridine) forms such adducts as 3.(benzene), 3.(chloroform), 3.0.5(toluene), and 3.(isobutyl benzoate). Modified acridinol host 4 (9-(3,5-dihydroxy-1-phenyl)-4-hydroxyacridine) having an additional OH group on the acridine ring affords such adducts as 4.(benzene), 4.(chloroform), 4.0.5(toluene).0.5(water), 4.(methanol).(water), and 4.(ethyl acetate). In the crystals, hosts 3 and 4 form hydrogen-bonded (O-H...O-H) poly(resorcinol) chains which are linked together via interchain O-H...N hydrogen bonds to give a coordinatively saturated (O-H...O-H...N) 2D net composed of doubly hydrogen-bonded and antiparallel-stacked, self-complementary cyclic dimer 3(2) or 4(2) as a rigidified building block, the otherwise flexible O-H...O-H hydrogen bonds being thereby taken in a cyclophane-like structure. This network turns out to be remarkably well preserved among the above adducts. Guest molecules, which are disordered in many cases, are incorporated in the cavities left. The binding of small polar guests to host 4 is primarily due to hydrogen bonding to the OH group on the acridine ring. The latter therefore acts only as a polarity modifier of preserved cavities. Adduct 3.(benzene), that is, 3(2).2(benzene) readily loses one of two guest molecules bound in each cavity to give a microporous half-filled adduct 3(2).(benzene) which adsorbs 1 mol of benzene to regenerate the starting full adduct without involving a phase change, as confirmed by X-ray powder diffractions and reversible Langmuir-type adsorption/desorption isotherms. The self-complementarity strategy for designing rigid crystal structures is discussed with a particular reference to the possibility of systematic perturbation/variation approaches in crystal engineering.  相似文献   

13.
The urea moiety, which acts as a good hydrogen-bond donor, has been incorporated into a hemilabile phosphinoalkyl thioether ligand. Upon reaction of the ligand with a Rh(I) precursor, a tweezer complex with near-parallel planar urea moieties 2 forms. The host-guest interaction of 2 with Cl(-) has been characterized in solution and in the solid state. Cl(-) binding with the urea groups in 2 is retained under CO in nonpolar solvents to give a five-coordinate CO adduct 3. In polar solvents, CO binding to Rh(I) results in a Cl(-) shift from the urea host site to the Rh(I) metal center with a concomitant breaking of the Rh-S bonds. This is an unusual example of how two types of different interactions important in molecular recognition (ligand coordination to a metal and hydrogen bonding) can be regulated within one molecule through small-molecule coordination chemistry.  相似文献   

14.
利用扫描隧道显微术(STM)研究了枝状分子BIC3与4,4′-联吡啶(BP),吡啶乙炔撑衍生物(PE3,PE4)等分子在石墨表面的二元共组装结构.BIC3分子能够在端基为吡啶基的客体分子诱导下,形成柔性线状分子模板,并捕捉客体分子形成线状主客体结构.通过选择客体分子结构,可选择性调节BIC3主体模板结构及最终的主客体二元结构.例如,客体分子吡啶端基的间距决定BIC3-吡啶基分子主客体结构中的氢键作用方式,而客体分子侧向宽度及吡啶环的数目影响线状主客体结构的条垄间距和分子比例.研究结果为可控构筑线状主客体纳米结构,实现表面自组装结构的功能性提供了思路.  相似文献   

15.
Structural data illustrating various ways of association of the molecules of host and guest observed in the clathrates of trans-9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboxylic acid (DED) with chloroform, ethyl propionate, 1,4-dioxane and acetone are presented. The following types of host-guest interactions are considered: “true clathrate” without host-guest hydrogen bonds (DED + chloroform, DED + ethyl propionate), infinite associate (DED + 1,4-dioxane) and discrete associate (DED + acetone).  相似文献   

16.
We have prepared and investigated two dendrimers based on a 1,3,5-trisubstituted benzenoid-type core, containing 9 and 21 viologen units in their branches, respectively, and terminated with tetraarylmethane derivatives. We have shown that, in dichloromethane solution, such highly charged cationic species give rise to strong host-guest complexes with the dianionic form of the red dye eosin. Upon complexation, the absorption spectrum of eosin becomes broader and is slightly displaced toward lower energies, whereas the strong fluorescence of eosin is completely quenched. Titration experiments based on fluorescence measurements have shown that each viologen unit in the dendrimers becomes associated with an eosin molecule, so that the number of positions ("seats") available for the guest molecules in the hosting dendrimer is clearly established, e.g., 21 for the larger of the two dendrimers. The host-guest interaction can be destroyed by addition of chloride ions, a procedure which permits eosin to escape from the dendrimer's interior in a controlled way and to regain its intense fluorescence. When chloride anions are precipitated out by addition of silver cations, eosin molecules re-enter the dendrimer's interior and their fluorescence again disappears.  相似文献   

17.
Here,the selective adsorption behaviors of guest molecule COR in two hexamer host grids were investigated by means of scanning tunnelling microscope(STM).The assembled structures of small functional organic molecules TTBTA and TATBA were thermodynamically stable.Interestingly,the introduction of the guest molecule COR destroyed the original hexamer structure of TTBTA and combined with it to form a new triangular host-guest system.Different from TTBTA,the introduction of the guest molecule COR did not affect the six-membered ring structure of TATBA.Furthermore,the co-assembly structure of TTBTA/TATBA/COR was established and the guest molecule COR showed preferential adsorption to the TATBA host grid.Density functional theory(DFT) calculations had been performed to disclose the mechanism of the involved assemblies.  相似文献   

18.
Crystalline inclusion complexes between the cyclophane 1 and three isomers of picoline and lutidine were grown and their properties and structures were studied by X-ray analysis, thermal gravimetry (TG), and differential scanning calorimetry (DSC). In competition experiments, the cyclophane host, which by itself is only able to form weak Cbond;H.acceptor hydrogen bonds, is able to discriminate between the different picoline or lutidine isomers, although in some cases a strong concentration dependence of the preferred isomer is observed. In the three-component experiments, inclusion of 4-picoline is strongly favored when X(4-picoline)>0.35-0.39. Very similar results were obtained in the lutidine series. The fact that 2,4-lutidine is favored when X(2,4-lutidine)>0.2 indicates that the host prefers the isomer with the methyl group in 4-position relative to the nitrogen atom. The selectivities observed can be explained based on the assignment of the inclusion complexes to different adduct classes. In the case of the picoline isomers, the preference of 4-picoline was in good agreement with the calculated lattice energies for this series. The present work also shows that caution is advisable when deducing selectivity of crystalline inclusion compounds from guest competition experiments.  相似文献   

19.
A fluorescent and photoresponsive host based on rigid polyphenylene dendrimers (PPDs) has been synthesized. The key building block for the divergent dendrimer buildup is a complex tetracyclone 12 containing azobenzenyl, pyridyl, and ethynyl entities. The rigidity of polyphenylenes is of crucial importance for a site-specific placement of different functions: eight azobenzene (AB) moieties into the rigid scaffold, a fluorescent perylenetetracarboxdiimide (PDI) into the core, and eight pyridin functions into the interior cavities. AB moieties of host-1 undergo reversible cis-trans photoisomerization and are photostable, as confirmed by various techniques: UV-vis, (1)H NMR, size exclusion chromatography, and fluorescence correlation (FCS). In this system, AB moieties act as photoswitchable hinges and enable control over (i) molecular size, (ii) intramolecular energy transfer between AB and PDI, and (iii) encapsulation and release of guest molecules. The presence of PDI allows not only following the effect of cis-trans photoisomerization on molecular size with highly sensitive FCS but also monitoring the efficiency of the intramolecular energy transfer process (from AB to PDI) by time-resolved optical spectroscopy. Pyridyl functions were incorporated to facilitate guest uptake via hydrogen bonds between the host and guests. Also, we have demonstrated that the photoswitchability of the host can be utilized to actively encapsulate guest molecules into its interior cavities. This novel, light-driven encapsulation mechanism could enable the design of new drug delivery systems.  相似文献   

20.
The first supramolecular star polymer based on pseudorotaxane host-guest complexation was prepared from statistical complexation of a homotritopic tris(crown ether) host and monotopic paraquat-terminated polystyrene guest in solution. The formation of this supramolecular star polymer was confirmed by proton NMR characterization and viscosity studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号