首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Demonstration of the initial results of breath-hold 3D MR coronary angiography with patients using a new intravascular contrast agent (feruglose). Contrast-enhanced 3D MR-coronary angiography was performed in 5 patients with coronary artery disease after administration of feruglose in three different doses (0.5 (n = 3), 2, 5 mg Fe/kg body weight for each patient). MR coronary angiography was performed with an ECG-triggered 3D-FLASH-sequence during breath-hold at 1.5 T (TR 6.8 ms, TE 2.5 ms, flip-angle 30 degrees ). To reduce data acquisition time, only the two anterior elements of the phased-array body coil were activated. The data acquisition window within the cardiac cycle ranged between 217-326 ms depending on the matrix. Signal-to-noise (SNR) and contrast-to-noise ratios (CNR) of the coronary arteries were analyzed, and the results for the detection of coronary artery stenoses were compared with those obtained by conventional coronary angiography. SNR and CNR revealed an improved image quality at a dose of 2 mg Fe/kg compared with the lower dose, but no further improvement was obtained by rising the dose to 5 mg Fe/kg. Except for the left circumflex artery of one patient, at minimum the proximal parts of all four main coronary arteries could be imaged for all patients. Within the visible parts of the coronary arteries, six of eight significant coronary stenoses were identified correctly. Imaging of the proximal parts of the coronary arteries including detection of stenoses is possible during breath-hold using an intravascular contrast agent.  相似文献   

2.
ObjectivesTo evaluate the diagnostic performance of a new three-dimensional T1-weighted turbo-spin-echo sequence (3D T1-w TSE) compared to 3D contrast-enhanced angiography (CE-MRA) for stenosis measurement and compared to 2D T1-w TSE for intra-plaque hemorrhage (IPH) detection.MethodsEighty three patients underwent carotid MRI, using a new elliptic-centric phase encoding T1-weighted 3D TSE sequence in addition to the clinical protocol.Two observers evaluated image quality, presence of flow artifacts, and presence of intra-plaque hemorrhage, and computed the NASCET degree of stenosis for CE-MRA and for the new sequence. Inter-observer agreement and correlation between 3D TSE and CE-MRA for NASCET stenosis was estimated using Cohen's kappa, and correlation using linear regression and Bland-Altman plots.Histology was performed on endarterectomy samples for 18 patients. Sensitivity and specificity of 2D and 3D TSE for IPH diagnosis were computed.Results3D TSE showed better image quality than 2D TSE (p < 0.05). Interobserver agreement was good (kappa  0.86). Correlation between 3D TSE and CE-MRA was excellent (R = 0.95) for NASCET stenosis. Sensitivity and specificity for IPH diagnosis was 50% and 100% for 2D TSE and 100% and 83% for the 3D TSE.ConclusionsThe new 3D T1-w TSE allows both reliable measures of carotid stenosis, with a slight overestimation compared to CE-MRA (5%), and improved IPH identification, compared to 2D TSE.  相似文献   

3.
We describe a case of a 59-year-old patient with intrahepatic arterioportal fistula secondary to blunt trauma sustained by a motor vehicle accident 36 years earlier. The fistula was demonstrated 36 years after the accident in a clinical work-up for diarrhea of 1 month's duration, using contrast enhanced three-dimensional breath-hold MRA. A communication between the dilated portal vein and dilated hepatic artery was shown at the level of distal branches. After subsequent demonstration by conventional angiography, the fistula was embolized using steel coils. Following the therapeutic intervention, the patient's diarrhea ceased.  相似文献   

4.
BACKGROUND AND PURPOSE: We occasionally encounter phenomena in which venous flow signals of the cavernous sinus (CS) and/or inferior petrosal sinus (IPS) are visualized paradoxically in patients without arteriovenous shunt in 3D time-of-flight magnetic resonance angiography (3D-TOF MRA) of the brain. The aims of this study are to examine the frequency and cause of this phenomenon ("pseudo-shunt" image) and to determine points of differentiation from definite arteriovenous shunt images ("real shunt"). METHODS: We retrospectively examined 85 maximum intensity projection images obtained by MRA in the absence of arteriovenous shunts to detect pseudo-shunt images, and evaluated source images of pseudo-shunt studies for venous structures. Four real-shunt MRA studies were compared with pseudo-shunt studies on three points: (1) extension of sinuses, (2) extension of cortical veins, and (3) signal intensity of sinuses as assessed by the scoring method (1 point when these findings exist, 0 when they do not). RESULTS: We detected five CS (3%) and six IPS (4%) signals in 9 (11%) of the 85 cases. In the source images of four pseudo-shunt images in the CS, we detected signals from the sphenoparietal sinus (SPS). The average score was significantly lower in the pseudo-shunt (0.22) than the real-shunt (2.75) images (P < .0001). CONCLUSION: In cerebral 3D-TOF MRA, pseudo-shunt images were seen in 11% (9/85) of the study population, with antegrade upward blood flow of the SPS considered as one of the causes. Real-shunt signals can be distinguished from pseudo-shunt signals by evaluation of source images.  相似文献   

5.
A magnetic resonance sequence for high-resolution imaging of coronary arteries in a very short acquisition time is presented. The technique is based on fast low-angle shot and uses fat saturation and magnetization transfer contrast prepulses to improve image contrast. GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) is implemented to shorten acquisition time. The sequence was tested on a moving anthropomorphic silicone heart phantom where the coronary arteries were filled with a gadolinium contrast agent solution, and imaging was performed at varying heart rates using GRAPPA. The clinical relevance of the phantom was validated by comparing the myocardial relaxation times of the phantom's homogeneous silicone cardiac wall to those of humans. Signal-to-noise ratio and contrast-to-noise ratio were higher when parallel imaging was used, possibly benefiting from the acquisition of one partition per heartbeat. Another advantage of parallel imaging for visualizing the coronary arteries is that the entire heart can be imaged within a few breath-holds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号