首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2-Hydroxyethyl methacrylate (HEMA)-N-vinyl-2-pyrrolidone (VPy) copolymers of various compositions have been prepared. The copolymers obtained were examined for their ability to bind a homologous series of methyl orange derivatives, methyl orange, ethyl orange, propyl orange, and butyl orange, at 5, 15, 25, and 35°C, respectively, in an aqueous solution. The first binding constants and the thermodynamic parameters that accompanied the binding were evaluated. The binding ability of the copolymer for the small cosolute was enhanced with an increase of the HEMA content in the copolymer. Moreover, a bell-shaped curve appeared in the binding of butyl orange by the copolymers having higher HEMA residues when the first binding constant was plotted as a function of temperature, whereas no such phenomenon was detected for the copolymers with less HEMA content or for the less hydrophobic dye, methyl orange, ethyl orange, or propyl orange. This peculiar temperature dependence of the first binding constant shows that the enthalpy of the binding varies from a positive (unfavorable) value below ca. 15°C to a negative (favorable) one above this temperature. This behavior can be accounted for in terms of more hydrophobic effects involved in the binding process.  相似文献   

2.
The temperature dependence of the binding of butyl orange by a homopolymer of 2-dimethylaminoethyl methacrylate (DMAEMA) and copolymers of DMAEMA and N-vinyl-2-pyrrolidone (VPy) has been examined at various pH's. The binding is very much dependent upon the temperature of the system, the pH of the binding medium, and the DMAEMA content in the polymer. In this case maximal binding is obtained at approximately 15–25° in the temperature range measured, although in most cases which have been examined, the degree of binding increases steadily with increasing temperature. This peculiar temperature dependence of the binding becomes more pronounced as the pH and the DMAEMA content are increased. The appearance of the peculiarity is discussed in terms of the pH-induced conformational changes of the polymer and the hydrophobicity of the polymer.  相似文献   

3.
The copolymers of N-vinyl-2-pyrrolidone and 2-dimethylaminoethyl methacrylate, 2-diethylaminoethyl methacrylate, 2-dimethylaminoethyl acrylate, or 2-dimethylaminopropyl acrylamide have been prepared. Studies were made of the binding of a “binding probe,” methyl orange, by the copolymers in aqueous solution. The first binding constants accompanying the binding were evaluated. Furthermore, the intensity of fluorescence of a hydrophobic fluorescent probe, 2-p-toluidinylnaphthalene-6-sulfonate, in the presence of these polymers was investigated. The nature and phenomena of dye binding and hydrophobic fluorescent probe binding with the polymers are discussed.  相似文献   

4.
The pH dependence of the interaction of poly(2-dimethylaminoethyl methacrylate) and copolymers of 2-dimethylaminoethyl methacrylate and N-vinyl-2-pyrrolidone with methyl orange, 2-p-toluidinylnaphthalene-6-sulfonate (TNS), and 1,6-diphenyl-1,3,5-hexatriene (DHT) was studied by equilibrium dialysis and fluorescence measurements at pH's 7–10. The first binding constant accompanying the binding of methyl orange and TNS by the polymers, in particular the homopolymer, shows a maximum around pH 8 and maximal fluorescence intensity of TNS is obtained around pH 8.5 in the presence of the polymers. To elucidate these observations the pH-induced conformational changes of the homopolymer were examined by potentiometric titration and viscosity measurements and the thermodynamic parameters that accompany the binding were calculated. The polymer was found to change from an extended coil at lower pH to a compact coil at higher pH. The electrostatic attraction between the sulfonate group of the small molecule and the protonated nitrogen atoms on the polymer is increased at lower pH and the hydrophobic interaction between the hydrophobic moieties of the polymer and the small molecule is enhanced at higher pH. The results obtained for the dye binding and fluorescence intensity were discussed in terms of the electrostatic and hydrophobic interactions.  相似文献   

5.
The ability of powdered Nylon 612 to bind methyl orange, ethyl orange, propyl orange, and butyl orange was investigated at 5, 15, 25 and 35°C in an aqueous solution. The amount of binding of the dye is much higher with this polyamide than with powdered Nylon 66 reported previously,1 although the former polymer has fewer amide end groups. The Van't Hoff plots of the first binding constant for the binding of butyl orange and propyl orange by powdered Nylon 612 exhibit a bell-shaped curve, whereas the plots for methyl orange and ethyl orange do not. Maximal binding occurs at approximately 15°C for propyl orange and at about 25°C for butyl orange. This is the first instance where the peculiar temperature dependence of the binding constant has been found in the binding of propyl orange, whose hydrophobicity is less than that of butyl orange. These tendencies can be accounted for in terms of increased hydrophobic of butyl orange. These tendencies can be accounted for in terms of increased hydrophobic domains in powdered Nylon 612 and enhanced hydrophobic contributions in the binding process.  相似文献   

6.
Terpolymers composed of Nn‐propylacrylamide (NPAAm), butyl methacrylate (BMA), and N,N‐diethylaminoethyl methacrylate (DEAEMA) were prepared in an attempt to investigate the temperature‐induced phase transition and its mechanism. Poly(NPAAm) showed the lower critical solution temperature (LCST) around 24°C in water. With the incorporation of DEAEMA with NPAAm, the LCST change was characterized by an initial increase. However, the LCST was shifted to the lower temperature at the later stage. This might be explained in terms of hydrophilic/hydrophobic contribution of DEAEMA to the LCST. The swelling behavior of copolymer gel in the various solvents and spin‐lattice relaxation time (T1) study by NMR strongly suggested the hydrophilic/hydrophobic contribution of DEAEMA to the LCST depending on the local environment. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1407–1411, 1999  相似文献   

7.
Polyion complexes of sodium poly(methacrylate) and piperidinium cationic polymers [I], which are insoluble in water and have an equal number of positive and negative charges, bind organic anions (methyl orange, ethyl orange, propyl orange, butyl orange, and pentyl orange) in aqueous solution. The strength of the binding is enhanced by an increase in the hydrophobicity of the polyion complex and the small cosolute. Moreover, strong cooperative interactions appear with increased uptake of the small molecule. Urea and an inorganic electrolyte (KCl) were examined for their effect on the binding, the amount of which is strongly suppressed by these additives. The significance of hydrophobic and electrostatic interactions which accompany the binding is described.  相似文献   

8.
Radiation-induced copolymerization of hydrophili+ monomers, viz., 2-hydroxyethyl methacrylate (HEMA), 2-hydroxypropyl methacrylate (HPMA), and N-vinyl-2-pyrrolidone (NVP) with vinyl acetate (VAc) was carried out in bulk at 25°C. The copolymer composition was determined from the acetoxy content. The copolymerization parameters were determined by a graphical method and compared with those determined by the Yezrielev, Brokhina, and Roskin (YBR) method. Thermal properties of copolymers were studied by GC-MS. Probable mechanisms were suggested from the products obtained.  相似文献   

9.
Very well‐controlled polymerizations of 2‐(dimethylamino)ethyl methacrylate (DMAEMA) and 2‐(diethylamino)ethyl methacrylate (DEAEMA) in aqueous and methanolic solutions via atom transfer radical polymerization (ATRP) at ambient temperature were demonstrated. Poly(DMAEMA) and poly(DEAEMA) of low polydispersity index (PDI) of ~1.07 were obtained using the p‐toluenesulfonyl chloride/CuCl/1,1,4,7,10,10‐hexamethyl‐triethylenetetramine (p‐TsCl/CuCl/HMTETA) system. Excellent control of polymerization was achieved even in pure methanol. This is in contrast with the very poor control of DMAEMA ATRP in methanol reported previously using a different intiator/catalyst/ligand system. The initiator p‐TsCl underwent hydrolysis reaction in aqueous methanolic solutions with a second‐order rate constant of 6.1 × 10?4 dm3 mol?1 s?1 at 25 °C. Both poly(DMAEMA) and poly(DEAEMA) retained almost full chlorine‐functionization at the chain ends. Well‐defined block copolymers of DEAEMA and DMAEMA were successfully obtained by starting with either macroinitiators of DEAEMA or DMAEMA. Other well‐defined diblock copolymers could be prepared using these macroinitiators. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5161–5169, 2004  相似文献   

10.
Ferrocenylmethyl acrylate (I) and ferrocenylmethyl methacrylate (II) have been readily copolymerized with maleic anhydride in benzene–ethyl acetate solutions. Similarly, II has been copolymerized with both acrylonitrile and N-vinyl-2-pyrrolidone in benzene solutions to give higher molecular weight copolymers in high yields. In all cases azobisisobutyronitrile has been the initiator. Based on e values obtained, the metal carbonyl substituent acts as an electron-withdrawing group. Over a wide range of comonomers (N-vinyl-2-pyrrolidone, styrene, vinyl acetate, methyl acrylate, acrylonitrile, and maleic anhydride) I and II exhibit r1 values lower than (and r2 values higher than) similar copolymerizations with methyl acrylate or methyl methacrylate. Further more, the Q values found for I (0.03–0.11) and II (0.08–0.18) are smaller than those for methyl acrylate (0.46) and methyl methacrylate (0.74). Thus, I and II are less reactive than expected, presumably due to steric effects.  相似文献   

11.
The extent of binding of methvI orange, ethyl orange, propyl orange, and butyl orange by crosslinked polyvinylpyrrolidone was measured in all aqueous Solution. The first binding constants and the thermodynamic parameters accompanying the binding were evaluated. These values were compared with those of water-soluble polyvinylpyrrolidone. The first binding constant, the absolute magnitude of ΔF°, and the value of ΔS° of the crosslinked polyvinylpyrrolidone are substantially larger than those of the water-soluble product for any particular dye. These behaviors can be accounted for in terms of increased hydrophobic domains in the former and enhanced hydrophobic contribution in the binding process. Also the binding of the dye by the crosslinked polymer in a nonaqueous solvent, ethylene glycol, was measured to assess the contribution of hydrophobic interaction to the dye-polymer complex formation in aqueous medium. It was found that the binding of butyl orange by the crosslinked polymer is suppressed in ethylene glycol and the contribution of entropy term to the free energy change in the aqueous environment is large compared with that in ethylene glycol. The significance of the hydrophobic of the hydrophobic interaction in the dye-polymer association process is described.  相似文献   

12.
Polymerization of 2‐(diethylamino)ethyl methacrylate (DEAEMA) via homogeneous atom transfer radical polymerization under various reaction conditions is described. The effects of the initiators and solvents were examined. With 1,1,4,7,10,10‐hexamethyl triethylenetetramine/copper(I) chloride/p‐toluenesulfonyl chloride as the ligand/catalyst/initiator system in methanol, poly(DEAEMA) with a polydispersity index as low as 1.07 was synthesized. Kinetic studies demonstrated the polymerization was very well controlled and exhibited the living characteristic of the process. Well‐defined block copolymers of DEAEMA and tert‐butyl methacrylate (tBMA) were successfully synthesized. The copolymers could be synthesized with equally good results by starting with either p(DEAEMA) or p(tBMA) as the macroinitiators. However, only the macroinitiators terminated with chlorine should be used. The corresponding macroinitiators with bromine as a transferable group did not yield well‐defined copolymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2688–2695, 2003  相似文献   

13.
The binding of 4′-dibutylaminoazobenzene-4-sulfonate anion (butyl orange) by bovine serum albumin has been examined quantitatively by an equilibrium dialysis method at 5, 10, 15, 20, 25, and 35°C. The first binding constants and the thermodynamic parameters for the formation of the first dye anion-protein complex have been calculated. The peculiar temperature dependence of the first binding constant could be observed. That is, the value of the first binding constant increases with increasing temperature until it reaches a maximum value at approximately 18°C and then decreases with raising temperature. Accordingly, this binding process is exothermic above 18°C and is endothermic below 18°C. Near 18°C the process exhibits athermal reaction. From the thermodynamic data obtained, it is evident that the favorable free energy of the binding is accompanied by an entropy gain and that the enthalpies of the binding vary from a positive (unfavorable) value below 18°C to a negative (favorable) one above 18°C. Furthermore an apparent temperature dependence of the thermodynamic functions was observed. That is, ΔF° becomes larger in absolute magnitude as the temperature increases. The positive quantity of ΔS° tends to decrease with increasing temperature. All these facts can be interpreted satisfactorily in terms of hydrophobic interactions between hydrophobic portions of the dye and nonpolar parts of the albumin.  相似文献   

14.
A range of poly(ε-caprolactone)/poly(N-vinyl-2-pyrrolidone) amphiphilic block copolymers with well-de ned hydrophilic chain length were synthesized by the living/controlled reversible addition fragmentation chain transfer polymerization method. The composition and struc-ture of the targeted resultants were characterized with 1H NMR, 13C NMR, FT-IR spec-troscopy and gel permeation chromatography. The various block copolymers were success-fully employed to fabricate the spherical micelle with core-shell morphological structure. The poly(N-vinyl-2-pyrrolidone) block-dependent characteristics of the copolymeric micelles were investigated by uorescence spectroscopy, dynamic light scattering, and transmission electron microscopy. The solubilization of the hydrophobic ibuprofen as a model drug in the micelle solution was also explored. It was found that the drug loading contents are related to the micellar morphology structure determined by hydrophilic chain length in the copolymer.  相似文献   

15.
The reaction of cellulose phosphonate and N-vinyl-2-pyrrolidone in ethanol in the presence of sodium ethoxide was investigated and thermal stabilities and flame-retardant properties for cellulose phosphonate modified with N-vinyl-2-pyrrolidone were discussed. The results in this study point out the following important aspects of flame retardation of cellulose fabrics: (1) The reaction of cellulose phosphonate and N-vinyl-2-pyrrolidone in the presence of sodium ethoxide results in graft polymerization of N-vinyl-2-pyrrolidone at P? H sites in cellulose phosphonate; an average chain length of the graft polymer is about five units of vinylpyrrolidone. (2) The graft polymerization of N-vinyl-2-pyrrolidone can improve both stabilities, especially the flame-retardant properties of cellulose fabrics. (3) Amides, whether noncyclic or cyclic, are suitable for nitrogen compounds that can effectively operate as synergists.  相似文献   

16.
17.
N-vinyl-2-pyrrolidone-based hydrogels were prepared by the Diels-Alder reaction in water for the first time. Copolymers of N-vinyl-2-pyrrolidone(VP) and furfuryl methacrylate(FM) were synthesised by free radical polymerisation in toluene at 70 °C by using 2,2′-azobisisobutyronltrile as an initiator. Polymeric dienophile (PEG-AMI) was prepared from N-alaninyl maleimide (AMI) and poly(ethylene glycol) (PEG) by using N,N′-dicyclohexylcarbodiimide (DCC) as a dehydrating agent. The prepared dienes and dienophile were then dissolved in water and mixed, leading to gelation via Diels-Alder reaction after some time. The gelation times of different copolymers and PEG-AMI in different solvents and at different temperatures were measured by the vial inversion method, and the swelling behaviour of dried hydrogels was studied using a general gravimetric method. The gelation time was shorter in water than in organic solvents, and the gelation time decreased with the increase of temperature and FM content in copolymers. Conversely, the swelling ratios increased with the decrease of temperature and FM content in the copolymers. Disassembly experiments suggested that N,N-dimethylformamide (DMF) could accelerate the retro-DA reaction.  相似文献   

18.
Schiff base (SB) monomers of vinylbenzaldehyde with functional amines were prepared. Copolymers of SB monomers with N-vinyl-2-pyrrolidone soluble in aqueous solutions were obtained in most cases. However, p-aminobenzenesulfonamide monomer resulted in gel formation. Thus, the reaction of vinylbenzaldehyde copolymer with the sulfonamide was used instead of the copolymerization. The hydrolytic behaviors of SB monomers and copolymers to liberate respective amines were structure dependent and, for most copolymers, the rates were lower than those of the corresponding monomers.  相似文献   

19.
Polyvinylpyrrolidones of various degrees of cross-linkage have been prepared by radical polymerization of N-vinylpyrrolidone with methylenebisacrylamide to regulate the fraction of cross-linkage. The insoluble polymers obtained were examined for their ability to bind methyl orange and its homologs, methyl orange, ethyl orange, propyl orange, and butyl orange at 5, 15, 25, and 35°C, respectively, in an aqueous solution. The first binding constants and the thermodynamic parameters that accompanied the binding were calculated. For any particular dye the extent of binding, the absolute magnitude of ΔF°, and the value of ΔS° increased as the degree of cross-linkage increased, starting with water-soluble polyvinylpyrrolidone (zero cross-linkage) and proceeding to the polymer with high cross-linking density. This behavior can be accounted for in terms of more extensive hydrophobic domains in the cross-linked polymeric matrix that enhances hydrophobic interactions in the binding process. Moreover, the cross-linked macromolecule polymerized in the presence of methyl orange and then stripped of the bound methyl orange shows substantially stronger binding for this small molecule than the polymer cross-linked in the absence of methyl orange. In contrast, the cross-linked polymer prepared similarly in the presence of the larger molecule, butyl orange, exhibits decreased affinity toward the smaller consolute, methyl orange, than either of the other polymers described. It seems, therefore, that the polymeric matrix provides favorable binding sites or pockets that can accommodate a specific small molecule. The preparative procedure, which uses a small-molecule template, molds into the polymer some structural specificity in the binding of small molecules.  相似文献   

20.
Fluorescent polymersomes with both aggregation‐induced emission (AIE) and CO2‐responsive properties were developed from amphiphilic block copolymer PEG‐b‐P(DEAEMA‐co‐TPEMA) in which the hydrophobic block was a copolymer made of tetraphenylethene functionalized methacrylate (TPEMA) and 2‐(diethylamino)ethyl methacrylate (DEAEMA) with unspecified sequence arrangement. Four block copolymers with different DEAEMA/TPEMA and hydrophilic/hydrophobic ratios were synthesized, and bright AIE polymersomes were prepared by nanoprecipitation in THF/water and dioxane/water systems. Polymersomes of PEG45b‐P(DEAEMA36co‐TPEMA6) were chosen to study the CO2‐responsive property. Upon CO2 bubbling vesicles transformed to small spherical micelles, and upon Ar bubbling micelles returned to vesicles with the presence of a few intermediate morphologies. These polymersomes might have promising applications as sensors, nanoreactors, or controlled release systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号