首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Radical cyclopolymerization of acrylic anhydride (AA) was conducted under various polymerization conditions to yield highly cyclized polymer, and the content of the five-membered ring of cyclic poly-AA obtained was examined in detail. Five-membered ring formation was favored with increased solvent polarity, raised polymerization temperature, and decreased monomer concentration; the ring size of the cyclic structure could be controlled freely by choosing appropriate polymerization conditions. In addition to these results, the rate of polymerization and the molecular weight of the polymer were reduced under polymerization conditions where the five-membered ring formation was favored. Finally, a mechanistic discussion is given in order to interpret these results; a reaction scheme for propagation based on polymerization equilibrium is proposed.  相似文献   

2.
Alternating copolymers of α-methylstyrene (α-MeSt) and maleic anhydride (MAn) were prepared by free-radical-initiated polymerization in bulk, benzene, or butanone as solvents. By applying the generalized model described by Shirota and co-workers, the reactivity ratios k1c/k12 and k2c/k21 were calculated from the change of copolymerization rate with monomer feed at constant total monomer concentration. From the equation Rp = Rp(f) + Rp(CT) were calculated Rp(f) and Rp(CT), and it was found that in benzene the reaction proceeds predominantly by the addition of CT-complex monomers, while in butanone, cross propagation of free monomers predominates. Termination occurs predominantly by homotermination of α-MeSt macro free radicals, kt22, although the cross termination kt21 is also operative.  相似文献   

3.
A binary mixture of styrene and maleic anhydride has been graft copolymerized onto cellulose extracted from Pinus roxburghii needles. The reaction was initiated with gamma rays in air by the simultaneous irradiation method. Graft copolymerization was studied under optimum conditions of total dose of radiation, amount of water, and molar concentration previously worked out for grafting styrene onto cellulose. Percentage of total conversion (Pg), grafting efficiency (%), percentage of grafting (Pg), and rates of polymerization (Rp), grafting (Rg), and homopolymerization (Rh) have been determined as a function of maleic anhydride concentration. The high degree of kinetic regularity and the linear dependence of the rate of polymerization on maleic anhydride concentration, along with the low and nearly constant rate of homopolymerization suggest that the monomers first form a complexomer which then polymerizes to form grafted chains with an alternating sequence. Grafting parameters and reaction rates achieve maximum values when the molar ratio of styrene to maleic anhydride is 1 : 1. Further evidence for the alternating monomer sequence is obtained from quantitatively evaluating the composition of the grafted chains from the FT‐IR spectra, in which the ratio of anhydride absorbance to aromatic (CC) absorbance for the stretching bands assigned to the grafted monomers remained constant and independent of the feed ratio of maleic anhydride to styrene. Thermal behaviour of the graft copolymers revealed that all graft copolymers exhibit single stage decomposition with characteristic transitions at 161–165°C and 290–300°C. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1763–1769, 1999  相似文献   

4.
By assuming that the initial rate of copolymerization (Rp) of phenylvinyl alkyl ether (I) and maleic anhydride (MAn) equals the sum of the rate of polymerization of free monomers Rp(f) and CT complex monomers Rp(CT) the reactivity ratios k1c/k12 and k2c/k21 were calculated for copolymerization of I(R = Me, n-Pr, iso-Pr, and sec-Bu) and MAn from the change of copolymerization rate with monomer feed at a constant total monomer concentration. From the equation Rp = Rp(f) + Rp(CT) were calculated Rp(f) and Rp(CT) by applying the generalized model described by Shirota and coworkers and it was found that the participation of CT complex monomers increases with an increase in total monomer concentration in the feed. It was also found that the degree of CT complex monomer participation depends largely on the steric factors. In the copolymerization of I which contains bulky isopropyl or sec-butyl group even in the dilute solutions, copolymerization proceeds by the addition of CT complex monomers.  相似文献   

5.
Radical polymerization studies on diallyl oxalate (DAO), diallyl malonate (DAM), diallyl succinate (DASu), diallyl adipate (DAA), and diallyl sebacate (DAS) have been conducted kinetically from the standpoint of cyclopolymerization. Benzoyl peroxide was employed as the initiator. The initial overall rate of polymerization, Rp was not proportional to the square root or the first power of the initiator concentration, [I]. But Rp/[I]1/2 and [I]1/2 bore a linear relationship, provided the monomer concentration was kept constant. The residual unsaturation of the polymers decreased with decreasing monomer concentration. The ratio of the rate constant of the unimolecular cyclization reaction to that of the bimolecular propagation reaction of the uncyclized radical, Kc, was evaluated from the above relationship between the residual unsaturation and the monomer concentration at 60°C. The Kc values obtained were 3.6, 3.2, 2.8, 2.5, and 1.2 mole/l. for DAO, DAM, DASu, DAA, and DAS, respectively. The overall activation energies of polymerization were found to be 21.1 (DAO), 24.2 (DAM), 21.7 (DASu), 22.0 (DAA), and 22.2 (DAS) kcal/mole.  相似文献   

6.
Radical polymerization of methacrylic acid (MAA) and acrylic acid (AA) in the presence of a positively charged macromolecular matrix was studied. In the presence of a matrix, the rates of polymerization were remarkably increased, especially in high pH region. This suggests that electrostatic interaction between the macromolecular matrix and the growing chains and/or the monomer molecules plays an important role in the process of polymerization reaction. The kinetic orders were greatly influenced by the relative matrix concentration (PC) as follows: for (PC)0 > [M]0, Rp = k[M]0.9 [PC]0.3 [I]0.8≤ [M]0 Rp = k[M]0.3[PC]0[I]0,8 where [M] and [I] are monomer and initiator concentration, respectively, and k is a constant. The mechanism of the interaction of matrix with monomer and/or growing chains in the process of the propagation is discussed. The complex formed in the matrix polymerization could be easily made into fiber by spinning.  相似文献   

7.
The kinetics of redox -initiated polymerization of acrylic acid (AA) by the systerm Mn3+-isobutyric acid (IBA) in sulfuric acid was studied in the temperature range of 35–50°C. The overall rates of polymerization (Rp), disappearance of manganic ion (?Rm), and degree of polymerization (X n), were measured with variation in [monomer], [Mn3+], [IBA], H+, μ, [Mn2+], and temperature. The polymerization is initiated by the organic free radical that develops from the Mn3+-isobutyric acid oxidation reaction. Two types of termination reactions, one by the metal ion (Mn3+) and the other by the MN3+-isobutyric acid complex are proposed to explain the kinetic results. The various rate parameters were evaluated an discussed.  相似文献   

8.
Aqueous acrylic acid in the presence of cupric chloride has been subjected to γ-irradiation under various reaction conditions and the molecular weights of the resultant poly(acrylic acid) measured. The results, taken in conjunction with previous findings on the dependence of the rate of polymerization on intensity, monomer concentration, and cupric chloride concentration, indicate chain termination solely by cupric ion (rate constant ktCu) and chain transfer to polymer (rate constant kf). Values have been obtained for ktCu/kp, kf/kp and G(radical) of acrylic acid. On the basis of these data a theoretical chain-length distribution has been derived which agrees well with distribution measured by gel-permeation chromatography.  相似文献   

9.
The aqueous polymerization of acrylic acid and acrylamide initiated by peroxydiphosphate–sodium thiosulfate redox system was investigated within the temperature range of 25–35°C. The rates of polymerization were measured at different concentrations of oxidant, activator and monomer. The monomer and the initiator exponents were evaluated to be 1.12 and 0.51. The rate of polymerization decreases with increasing thiosulfate concentration. On the basis of the experimental observation of the dependence of the rate of polymerization, Rp, on various variables, a suitable kinetic scheme has been proposed and the rate parameters have been evaluated.  相似文献   

10.
Alternating copolymers of β-methylstyrene and maleic anhydride were prepared by free-radical-initiated polymerization in bulk and in toluene as a solvent. The reactivity ratios k1c/k12 and k2c/k21 were calculated from the change of copolymerization rate with a monomer feed at a constant total monomer concentration according to the generalized model of Shirota and coworkers. From the equation Rp = Rp(f) + Rp(CT) were calculated Rp(f) and Rp(CT), and it was found that in toluene the copolymerization proceeds predominantly by the addition of CT-complex monomers. Termination occurs predominantly by homotermination of β-methyl-styrene macro free radicals, kt22, but the cross termination kt21 is also operative.  相似文献   

11.
In order to elucidate the effect of the hydroxyl group on the polymerization of diallyl hydroxydicarboxylates, we investigated in detail the radical polymerizations of diallyl succinate (DASu), diallyl malate (DAMa), and diallyl tartrate (DATa), each of which have similar structure differing only in the number of hydroxyl groups present. The rate of polymerization (Rp) was quite enhanced in the order DASu < DAMa < DATa, in accord with the increase in the number of hydroxyl groups within a monomer unit. The enhanced ability of the allylic monomer radical to reinitiate chain growth was also in the same order, as was clear from the dependence of Rp on the initiator concentration. The dependence of the residual unsaturation of the polymer on the monomer concentration in the polymerizations of DAMa and DATa was abnormal in terms of cyclopolymerization. These results are discussed in connection with the formation of the intermolecular hydrogen bond through the hydroxyl groups.  相似文献   

12.
The effect of pressures up to 4000 atm on the free-radical cyclopolymerization of acrylic anhydride in solution has been investigated. Both the molecular weight and degre of cyclization of the polymer are increased by pressure. The rate of polymerization at first decreases with increasing pressure, but above 2500 atm a normal acceleration occurs.  相似文献   

13.
The cyclization constant Kc in the radical cyclopolymerization of acrylic and methacrylic anhydrides was evaluated in detail under various conditions. No linear relationship between in Kc and 1/T was observed; cyclization was acceleratively enhanced at elevated temperatures. The Kc values also increased with decreased monomer concentration and increased solvent polarity. These increasing dependencies of Kc are ascribed to the increased significance of depropagation, demonstrating a new interpretation of the temperature dependence of the cyclization constant in the radical cyclopolymerization of nonconjugated dienes.  相似文献   

14.
The polymerization of acrylic acid (AA) was performed under 60Co irradiation in the presence of dibenzyl trithiocarbonate at room temperature, and well‐defined poly(acrylic acid) (PAA) with a low polydispersity index was successfully prepared. The gel permeation chromatographic and 1H NMR data showed that this polymerization displays living free‐radical polymerization characteristics: a narrow molecular weight distribution (Mw/Mn = 1.07–1.22), controlled molecular weight, and constant chain‐radical concentration during the polymerization. Using PAA? S? C(?S)? S? PAA as an initiator, the extension reaction of PAA with fresh AA was carried out under 60Co irradiation, and the results indicated that this extension polymerization displayed controlled polymerization behavior. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3934–3939, 2001  相似文献   

15.
Carbon nanotubes (CNTs) chemically functionalized were used to synthesize a series of novel nanocomposite hydrogels by in situ polymerization with acrylic acid (AA) and acrylamide (AM). A novel strategy was developed to prepare these hydrogels. CNTs were functionalized following a three-step chemical procedure: (i) purified carbon nanotubes (CNTsp) were partially surface oxidized to obtain CNTs with hydroxyl, carbonyl and carboxyl groups on their sidewalls (CNTsoxi), (ii) CNTsoxi were reacted with oxalyl chloride to obtain CNTs functionalized with acyl chloride groups (CNTsOCl), and (iii) CNTsOCl were reacted with acrylic acid (AA). The product, AA modified CNTsOCl (CNTsOCl-AA) was used to prepare the (CNTsOCl-AA-AM) nanocomposite hydrogels, where anhydride groups were tethered to the surface of the CNTsOCl-AA. The swelling process in water was evaluated as a consequence of the anhydride group hydrolysis, which broke some chemical links between CNTsOCl-AA and crosslinked AA-AM network. Equilibrium-swelling values of all hydrogels increased as the content of AA increased and were larger for AA-AM hydrogels than for CNTsOCl-AA-AM nanocomposite hydrogels. Young’s moduli of CNTsOCl-AA-AM nanocomposite hydrogels prepared with 1 or 2?wt.% AA, reached larger values than those measured for AA-AM hydrogels. This tendency was reversed when the AA content was raised to 3?wt.%.  相似文献   

16.
This work examines the scope and limitations of the cyanoxyl (·OC?N)‐mediated free‐radical polymerization of acrylic acid (AA) with respect to the criteria of livingness. Cyanoxyl persistent radicals were generated in situ through the reaction between arenediazonium salts (X? C6H4N?NBF, where X is H, OCH3, Cl, or NO2) and sodium cyanate (NaOCN). This article thoroughly discusses the role played by such oxygen‐centered radicals in the polymerization process; it particularly focuses on the influence of the concentration and nature of the diazonium salt, the solvent, and the temperature on features such as the variations of ln([M]0/[M]) versus time (where [M]0 is the initial monomer concentration and [M] is the monomer concentration), the number‐average molar mass versus conversion, and the polydispersity versus conversion in cyanoxyl‐mediated free‐radical polymerizations of AA. Cyanoxyl‐terminated samples were used as macroinitiators for the polymerization of methyl methacrylate to generate poly(acrylic acid)‐b‐poly(methyl methacrylate) block copolymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 519–533, 2005  相似文献   

17.
The kinetics of polymerization of acrylamide and acrylic acid in aqueous solution photoinitiated by the complex, diazidotetramminecobalt(III) was systematically studied at 35°C and pH = 3. Monochromatic radiation at γ = 365, 405, and 435 mμ was employed. The kinetics of polymerization were followed by measurements of the rates of monomer disappearance (bromometrically) and complex disappearance (spectrophotometrically) and the chainlengths of the polymers formed (viscometrically). The dependences of the rate of polymerization on variables like light intensity, light absorption by the complex, wavelength, monomer concentration, and hydrogen ion concentration were studied. The rates of polymerization of acrylamide and acrylic acid were found to be propertional to the square of the monomer concentration and to the first power of light absorption fraction ke and light intensity I. A kinetic scheme is proposed in the light of experimental results involving (1) a primary photochemical act of excitation of the complex, followed by the dark reaction of electron transfer within the complex producing the azide radical; (2) initiation of polymerization by the azide radical; (3) termination of the chain process by the complex molecule.  相似文献   

18.
Recently, a research/development program has been initiated to investigate the kinetics of synthesis, characterization and applications of polyelectrolyte networks. The research on crosslinking involves both theoretical development and experimentation. Herein, is provided a summary of this work. In the experimental polymerization done to date, acrylic acid (AA)/N.N'-methylenebisacrylamide (BAM) was studied in considerable detail. The polymerization conditions were: temperature, 50°C; initial monomer concentration, 5 wt%, of which 1.0 mol% is BAM; K2S2O8(KPS) as the initiator, 10−3 mol/L; pH range, 1 − 13; sodium chloride concentrations up to 3.1 mol/L. Measurements included: monomer conversion, polymer composition, sol/gel fraction, swelling ratio, and the densities of primary cyclization, secondary cyclization and crosslinking. It was found that the effect of polymerization parameters on the resulting polymer network microstructure was dramatic, and in particular, the pH and ionic strength of the reaction medium were important parameters. In the theoretical studies, the Tobita-Hamielec kinetic gelation model was extended to incorporate the concept of ion pair interaction and the divinyl loop formation. The system was treated as a multi-component polymerization of acrylic acid, acrylate ion, acrylate ion pair and bisacrylamide. The model permits one to investigate the development of the crosslinking density distribution among primary polymer chains during the course of polymerization as a function of pH and ionic strength.  相似文献   

19.
The copolymerization of ethylene with maleic anhydride was carried out with γ-radiation and a radical initiator, i.e., 2,2′-azobisisobutyronitrile and diisopropyl peroxydicarbonate under pressure at various reaction conditions. The homopolymerization of neither monomer was observed in this system. In the γ-ray-initiated copolymerization the G value (polymerized monomer molecules per 100 e.v.) was shown to be between 103 and 104. It was found that the dose rate exponent of the rate is approximately unity, and the rate is proportional to the amount of ethylene monomer. Apparent activation energies of 1.8 and 27.5 kcal./mole were obtained for γ-ray-initiated and AIBN-initiated copolymerization, respectively. Since the composition of copolymer is independent of monomer molar ratio and the molar ratio of ethylene to maleic anhydride in the polymer is approximately unity, the monomer reactivity ratios were obtained as rE ? 0 and rM ? 0 for γ-ray-initiated polymerization at 40°C. Alternating copolymerization was, therefore, concluded to occur. Infrared analysis of the copolymer is almost consistent with this. The copolymer in the solid state is amorphous. It is soluble in water, cyclohexane, and dimethylformamide and insoluble in lower alcohols, ether, and aromatic hydrocarbons. The aqueous solution of polymer gave a strong acid.  相似文献   

20.
Alternating copolymers of vinyl acetate (VAC) and acrylic acid (AA) were obtained by free radical polymerization in the presence of GeCl4 and BCl3. For the GeCl4 system, the reaction rate was proportional to [initiator]1/2. Optimum rate was obtained when the molar ratio of the monomers was 1:1. The chain transfer agent CCl4 had no effect on the reaction. By means of ultra-violet spectra analysis, it was concluded that both VAC and AA formed complexes with GeCl4. ESR analysis gave us the information that salt complexed acrylic acid radical had greater cationic characteristics than uncomplexed radical. Thus the nature of alternation may be due to both complexed AA radical and activated monomer complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号