首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The radical cations and anions of naphtho [1,8-cd]-[1,2,6]thiadiazine (1) and 6,7-dihydroacenaphtho [5, 6-cd]-[1,2,6]thiadiazine (2) , as well as the radical anion of acenaphtho [5, 6-cd]-[1,2,6]thiadiazine (3) have been characterized by ESR. spectroscopy. The π-spin distributions in the radical cations \documentclass{article}\pagestyle{empty}\begin{document}$ 1^{\oplus \atop \dot{}}$\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ 2^{\oplus \atop \dot{}}$\end{document} strongly resemble those in the iso-π-electronic phenalenyl radical. A prominent feature of the radical anions \documentclass{article}\pagestyle{empty}\begin{document}$ 1^{\ominus \atop \dot{}}$\end{document}, \documentclass{article}\pagestyle{empty}\begin{document}$ 2^{\ominus \atop \dot{}}$\end{document} and \documentclass{article}\pagestyle{empty}\begin{document}$ 3^{\ominus \atop \dot{}}$\end{document} is the substantial localization of the π-spin population on the thiadiazine fragment. These findings are satisfactorily accounted for by HMO models using conventional heteroatom parameters.  相似文献   

2.
The flash photolysis of biacetyl produces CO, C2H6, and CH3COCH3 as main products, and in small amounts CO2, C2H4, and CH3CHO. The rate constants of reactions (2) and (3) of thermally equilibrated radicals were calculated from the amounts of products: .  相似文献   

3.
Iodostannates(II) with Anionic [SnI3] Chains – the Transition from Five to Six‐coordinated SnII The iodostannates (Me4N) [SnI3] ( 1 ), [Et3N–(CH2)4–NEt3] [SnI3]2 ( 2 ), [EtMe2N–(CH2)2–NEtMe2] [SnI3]2 ( 3 ), [Me2HN–(CH2)2–NH–(CH2)2–NMe2H] [SnI3]2 ( 4 ), [Et3N–(CH2)6–NEt3] [SnI3]2 ( 5 ) and [Pr3N–(CH2)4–NPr3]‐ [SnI3]2 · 2 DMF ( 6 ) with the same composition of the anionic [SnI3] chains show differences in the coordination of the SnII central atoms. Whereas the Sn atoms in 1 and 2 are coordinated in an approximately regular octahedral fashion, in compounds 3 – 6 the continuous transition to coordination number five in (Pr4N) [SnI3] ( 7 ) or [Fe(dmf)6] [SnI3]2 ( 8 ) can be observed. Together with the shortening of two or three Sn–I bonds, the bonds in trans position are elongated. Thus weak, long‐range Sn…I interactions complete the distorted octahedral environment of SnI4 groups in 3 and 4 and SnI3 groups in 5 and 6 . Obviously the shape, size and charge of the counterions and the related cation‐anion interactions are responsible for the variants in structure and distortion.  相似文献   

4.
Dibromomethylsulfoniumsalts — Preparation and Crystal Structure The salts CH3SBrA? (A? = SbCl, AsF) were prepared by various routes and characterized by their Ramanspectra. CH3SBrAsF crystallized in the monoclinic space group P21/c with a = 770,5(4) pm, b = 942,4(12) pm, c = 1329,3(14) pm, β = 100,28(6)°, Z = 4. Distances and bond angles in the cation are as expected.  相似文献   

5.
Studies on the Reactivity of Isomeric Heterodinuclear Fischer-Carbene Complexes exhibiting a Titanaoxetan or Titanaoxolen Substructure – Cycloreversion and Insertion Reactions The reactivity of isomeric four- and five-membered carbene complexes Cp*2 3 and Cp*2 4 [MLn: Cr(CO)5 ( a ); W(CO)5 ( b ); Cp*: C5(CH3)5] has been investigated. A cycloreversion reaction, unusual for common metallaoxetanes, is found to dominate the chemical behaviour of 3 . The generation of vinylidene fragment [Cp*2Ti?C?CH2] 2 as an intermediate is proved either by trapping with ethylene and isocyanate or by protonation of the α-carbon atom. On the other hand no cycloreversion is observed for the titanaoxolene carbene complexes 4 . Ringenlargement is found by the reaction of 3 and 4 with isonitriles under formation of iminoacyl complexes. Accordingly 2,6-dimethylphenylisonitrile reacts with 3 b forming Cp*2 12 [Ar: 2,6-(CH3)2? C6H3]. A reversible insertion of cyclohexylisonitrile in 4a leads to isolation of the six-membered metallacycle Cp*2 16 (Cy: C6H11).  相似文献   

6.
A novel chlorotitanium calix[4]arene complex was synthesized and tested, without activator, as catalyst for the polymerization of L ‐ and rac‐lactide under solvent‐free conditions. The catalyst displayed high activity, which depended on the monomer‐to‐catalyst molar ratio, and led to highly isotactic PLLA. Despite concomitant transesterification during the polymerization, polylactide formation was well‐controlled, the molar mass distribution indexes remaining in the restricted range of 1.2–1.4.

  相似文献   


7.
Synthesis and Structure Investigations of Iodocuprates(I). XV Iodocuprate(I) with Solvated Cations: [Li(CH3CN)4] [Cu2I3] and [Mg{(CH3)2CO}6][Cu2I4] [Li(CH3CN)4][Cu2I3] 1 and [Mg((CH3)2CO)6][Cu2I4] 2 were prepared by reactions of CuI with LiI in acetonitrile and of CuI with MgI2 in acetone. 1 crystallizes orthorhombic, Pnma, a = 552.7(2), b = 1258.8(8), c = 2516(1) pm, z = 4. [Li(CH3CN)4]+ cations are located between rod packings of CuI4 tetrahedra double chains [(CuI2/2I2/4)2]? parallel to the axis. Short intermolecular anion/cation contacts were observed. The crystal structure of 2 (monoclinic, P21/n, a = 1840(2), b = 1059.2(2), c = 1879(2)pm, β = 112.94(4)°, z = 4) is built up by [Mg((CH3)2CO)6]2+ cations forming a simple hexagonal sphere packing. The binuclear anions [Cu2I4]2? occupy holes in the trigonal prismatic channels formed by the cations.  相似文献   

8.
The kinetics of chlorine transfer from CH2Cl2, CHCl3, CCl4, and CCl3CN to the triethylsilyl radical was studied in the liquid phase by a competitive method. Br abstraction from 1-bromopentane was used as a reference. The following Arrhenius parameters were determined: where the error limits are two standard deviations (2σ). Based on these results, the observed reactivity trends in the chlorine transfer reactions of Et3Si radicals appear to primarily reflect the variation in entropy of activation rather than in activation energies.  相似文献   

9.
A one‐pot procedure for the synthesis of hyperbranched polyethylenes tethered with ATRP initiating sites by chain walking ethylene copolymerization with an acrylate‐type ATRP inimer, 2‐(2‐bromoisobutyryloxy) ethyl acrylate (BIEA) is reported. Because of its ability to incorporate acrylate‐type comonomers and tolerance toward the α‐bromoester group, the chain walking Pd‐diimine catalyst, [(ArNC(Me) (Me)CNAr)Pd(CH3)(NCMe)]SbF6 (Ar = 2,6‐(iPr)2C6H3), allowed the successful synthesis of a series of hyperbranched copolymers tethered with 2‐bromoisobutyryl groups at different densities. These copolymers may serve as polyfunctional macroinitiators for the ATRP of functional monomers to further synthesize core‐shell structured functionalized copolymers with a hyperbranched polyethylene core grafted with side chains of the functional monomers.

  相似文献   


10.
The kinetic isotope effects in the reaction of methane (CH4) with Cl atoms are studied in a relative rate experiment at 298 ± 2 K and 1013 ± 10 mbar. The reaction rates of 13CH4, 12CH3D, 12CH2D2, 12CHD3, and 12CD4 with Cl radicals are measured relative to 12CH4 in a smog chamber using long path FTIR detection. The experimental data are analyzed with a nonlinear least squares spectral fitting method using measured high‐resolution spectra as well as cross sections from the HITRAN database. The relative reaction rates of 12CH4, 13CH4, 12CH3D, 12CH2D2, 12CHD3, and 12CD4 with Cl are determined as k/k = 1.06 ± 0.01, k/k = 1.47 ± 0.03, k/k = 2.45 ± 0.05, k/k = 4.7 ± 0.1, k/k = 14.7 ± 0.3. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 37: 110–118, 2005  相似文献   

11.
Iodostannates with Polymeric Anions: (Me3PhN)4 [Sn3I10], [Me2HN–(CH2)2–NMe2H]2 [Sn3I10], and [Me2HN–(CH2)2–NMe2H] [Sn3I8] The polymeric iodostannate anions in (Me3PhN)4 [Sn3I10] ( 1 ) and [Me2HN–(CH2)2–NMe2H]2 [Sn3I10] ( 2 ) consist of Sn3I12‐trioctahedra, which share four common iodine atoms with adjacent units to form infinite layers in 1 and polymeric chains in 2 . In the anion of [Me2HN–(CH2)2–NMe2H] [Sn3I8] ( 3 ) distorted SnI6 octahedra sharing common edges and vertices form a two‐dimensional network. (Me3PhN)4 [Sn3I10] ( 1 ): Space group C2/c (No. 15), a = 2406.9(2), b = 968.26(7), c = 2651.7(2) pm, β = 111.775(9), V = 5738.9(8) · 106 pm3; [Me2HN–(CH2)2–NMe2H]2 [Sn3I10] ( 2 ): Space group P21/n (No. 14), a = 1187.2(1), b = 1554.4(1), c = 1188.9(1) pm, β = 116.620(8), V = 1961.4(3) · 106 pm3; [Me2HN–(CH2)2–NMe2H] [Sn3I8] ( 3 ): Space group P21/c (No. 14), a = 1098.9(2), b = 803.93(7), c = 1571.5(2) pm, β = 102.96(1), V = 1352.9(2) · 106 pm3.  相似文献   

12.
Reaction of A2CO3 (A = K, Rb) with Sn and Se in an H2O/CH3OH mixture at 115–130°C affords the isotypic selenidostannates(IV) A6Sn4Se11 _. xH2O (A = K, x = 8) 1 and 2 whose discrete [Sn4Se11]6– anions each contain two corner‐bridged ditetrahedral [Sn2Se6]4– species. Similar reaction conditions with A = Cs afford Cs2Sn2Se5 _. H2O ( 3a ) and Cs2Sn2Se5 ( 3b ) in which such [Sn2Se6]4– building blocks are connected through common Se atoms into infinite [Sn2Se52–] chains. The [Sn3Se72–] ribbons of (Et4N)2Sn3Se7 ( 4 ), formed by treating (Et4N)I with Sn and Se in methanol at 130°C, can be regarded as resulting from the condensation of [Sn2Se52–] chains with molecular [SnSe4]4– anions. The anions [Sn4Se11]6–, [Sn2Se52–], and [Sn3Se72–] represent the products of individual reaction steps on the potential condensation pathway of [Sn2Se6]4– to the lamellar selenidostannates(IV) [Sn4Se92–] or [Sn3Se72–].  相似文献   

13.
Supported Organometallic Complexes. VI. Characterization und Reactivity of Polysiloxane-Bound (Ether-phosphane)ruthenium(II) Complexes The ligands PhP(R)CH2D [R = (CH3O)3Si(CH2)3; D = CH2OCH3 ( 1b ); D = tetrahydrofuryl ( 1c ); D = 1,4-dioxanyl ( 1d )] have been used to synthesize (ether-phosphane)ruthenium(II) complexes, which have been copolymerized with Si(OEt)4 to yield polysiloxane-bound complexes. The monomers cis,cis,trans-Cl2Ru(CO)2(P ~ O)2 ( 3b ) and HRuCl(CO)(P ~ O)3 ( 5b ) were treated with NaBH4 to form cis,cis,trans-H2Ru(CO)2(P ~ O)2 ( 4b ) and H2Ru(CO)(P ~ O)3 ( 6b ), respectively (P ~ O = η1-P coordinated; = η2- coordinated). Addition of Si(OEt)4 and water leads to a base catalyzed hydrolysis of the silicon alkoxy-functions and a precipitation of the immobilized counterparts 4b ′, 6b ′. The polysiloxane matrix resulting by this new sol gel route has been described under quantitative aspects by 29Si CP-MAS NMR spectroscopy. 4b ′ reacts with carbon monoxide to form Ru(CO)3(P ~ O)2 ( 7b ′). Chelated polysiloxane-bound complexes Cl2Ru( )2 ( 9c ′, d ′) and Cl2Ru( )(P ~ O)2 ( 10b ′, c ′) have been synthesized by the reaction of 1b–c with Cl2Ru(PPh3)3 ( 8 ) followed by a copolymerization with Si(OEt)4. The polysiloxane-bound complexes 9c ′, d ′ and 10b ′, c ′ react with one equivalent of CO to give Cl2Ru(CO)( )(P ~ O) ( 12b ′– d ′). Excess CO leads to the all-trans-complexes Cl2Ru(CO)2(P ~ O)2 ( 14b ′– d ′), which are thermally isomerized to cis,cis,trans- 3b ′– d ′. The chemical shift anisotropy of 31P in crystalline Cl2Ru( )2 ( 9a , R = Ph, D = CH2OCH3) has been compared with polysiloxane-bound 9d ′ indicating a non-rigid behavior of the complexes in the matrix.  相似文献   

14.
The gas-phase decompositions of methylsilane and methylsilane-d3 have been investigated in a single-pulse shock tube at 4700 torr total pressure in the temperature range of 1125–1250 K. For CH3SiD3 at 1200 K three primary steps occur in the homogeneous decomposition with efficiencies in parentheses: , , and . For CH3SiH3 at 1200 K the primary CH4 elimination efficiency is 0.09 while the total primary H2 elimination efficiency is 0.91. Minor product formations of C2H4, acetylene, dimethylsilane, and SiH4 are discussed.  相似文献   

15.
Liquid secondary ion mass spectra of choline and acetylcholine halides exhibit several series of cluster ions whose origins were investigated using B/E and B2/E linked-scan techniques. In the case of choline halides three series of cluster ions were identified as (Me3$ \mathop {\rm N}\limits^ + $CH2CH2OH + nM), (Me3$ \mathop {\rm N}\limits^ + $CH2CH2OMe + nM) and (Me3N$ \mathop {\rm N}\limits^ + $CH2CH2OH · Me3$ \mathop {\rm N}\limits^ + $CH2CH2O? + nM), while (CH3COOCH2CH2$ \mathop {\rm N}\limits^ + $Me3 + nM), (Me3$ \mathop {\rm N}\limits^ + $CH2CH2OH + nM) and (CH2 = CH$ \mathop {\rm N}\limits^ + $Me3 + nM) were observed in the spectra of acetylcholine halides. For these cluster ions, bimolecular reactions induced on ion bombardment under secondary ion mass spectrometric conditions are discussed.  相似文献   

16.
Aged 2,5-dichloro-2,5-dimethylhexane (DDH)/BCl3 mixtures readily initiate the polymerization of isobutylene in CH2Cl2 at −35°C and yield asymmetric telechelic polyisobutylenes in the liquid range with narrow molecular weight distributions (Mw/Mn < 2.0). Kinetic studies indicate that chain transfer monomer is absent and DDH is not a chain transfer agent (i.e., inifer). According to results of model experiments, 1H and 13C NMR spectroscopy, chlorine-content, dehydrochlorination, and IR studies, the structure of the head group of the polyisobutylene product is Cl(CH3) 2CH2CH2C(CH3)2-and that of the tail group is -CH2C(CH3)2Cl. In line with the results of kinetic investigations and structure characterization studies it is postulated that the initiating cation is a cyclic chloronium ion formed from the DDH during aging in the presence of BCl3:   相似文献   

17.
In this Communication, the copolymerization of ethylene with a sterically hindered α‐olefin comonomer, γ‐trisubstituted 3,3‐dimethyl‐1‐butene (DMB), using a chain‐walking Pd‐diimine catalyst, [(ArNC(Me) (Me)CNAr)Pd(CH3)(NCMe)]SbF6 (Ar2,6‐(iPr)2C6H3) ( 1 ) is reported. In spite of its high steric bulkiness in the close proximity of the double bond, appreciable DMB incorporations (up to 3 mol‐%) are successfully achieved in the copolymers. The chain microstructure of the copolymers is elucidated, and the effect of DMB incorporation on polymer topology and thermal properties are examined. This work thus demonstrates the high capability of the Pd‐diimine catalyst in incorporating sterically encumbered α‐olefins.

  相似文献   


18.
ESR and ENDOR studies have been carried out on the radical cations obtained consecutively by reaction of trans-10b, 10c-dimethyl-10b, 10c-dihydropyrene ( 4 ) with AlCl3 in CH2C12. The primarily formed ${\bf 4}^{+ \atop \dot{}}$ rearranges at 253 K to the radical cation(s) of 1,6- ( 5a ) and/or 1,8-dimethylpyrene ( 5b ). At 323 K, the spectra of ${\bf 5a}^{+ \atop \dot{}}$/${\bf 5b}^{+ \atop \dot{}}$ are replaced by that of the highly persistent radical cation of 1,3,6,8-tetramethylpyrene ( 6 ). Surprisingly, ${\bf 6}^{+ \atop \dot{}}$ is also the only observable paramagnetic product resulting from a treatment of 4,5,7,8- ( 1 ), 4,7,13,16- ( 2 ), and 4,5,12,13-tetramethyl[2.2]paracyclophane ( 3 ) with AlCl3 in CH2Cl2 at 353 K. The structures of the intermediates in the rearrangement [${\bf 1}^{+ \atop \dot{}}$, ${\bf 2}^{+ \atop \dot{}}$, ${\bf 3}^{+ \atop \dot{}}$] → ${\bf 6}^{+ \atop \dot{}}$ are discussed.  相似文献   

19.
Reactions of the gold(I) triflimide complex [Au(NTf2)(PMe2Ar )] ( 1 ) with the gold(I) hydrocarbyl species [AuR(PMe2Ar )] ( 2 a – 2 c ) enable the isolation of hydrocarbyl‐bridged cationic digold complexes with the general composition [Au2(μ‐R)(PMe2Ar )2][NTf2], where Ar =C6H3‐2,6‐(C6H3‐2,6‐iPr2)2 and R=Me ( 3 ), CH?CH2 ( 4 ), or C?CH ( 5 ). Compound 3 is the first alkyl‐bridged digold complex to be reported and features a symmetric [Au(μ‐CH3)Au]+ core. Complexes 4 and 5 are the first species of their kind that contain simple, unsubstituted vinyl and acetylide units, respectively. In the series of complexes 3 – 5 , the bridging carbon atom systematically changes its hybridization from sp3 to sp2 and sp. Concomitant with this change, and owing to variations in the nature of the bonding within the [Au(μ‐R)Au]+ unit, there is a gradual decrease in aurophilicity, that is, the strength of the Au???Au bonding interaction decreases. This change is illustrated by a monotonic increase in the Au–Au distance by approximately 0.3 Å from R=CH3 (2.71 Å) to CH?CH2 (3.07 Å) and C?CH (3.31 Å).  相似文献   

20.
The substituted thiourea, 4‐methyl‐3‐thiosemicarbazide, was oxidized by iodate in acidic medium. In high acid concentrations and in stoichiometric excess of iodate, the reaction displays an induction period followed by the formation of aqueous iodine. In stoichiometric excess of methylthiosemicarbazide and high acid concentration, the reaction shows a transient formation of aqueous iodine. The stoichiometry of the reaction is: 4IO + 3CH3NHC(S)NHNH2 + 3H2O → 4I + 3SO + 3CH3NHC(O)NHNH2 + 6H+ (A). Iodine formation is due to the Dushman reaction that produces iodine from iodide formed from the reduction of iodate: IO + 5I + 6H+ → 3I2(aq) + 3H2O (B). Transient iodine formation is due to the efficient acid catalysis of the Dushman reaction. The iodine produced in process B is consumed by the methylthiosemicarbazide substrate. The direct reaction of iodine and methylthiosemicarbazide was also studied. It has a stoichiometry of 4I2(aq) + CH3NHC(S)NHNH2 + 5H2O → 8I + SO + CH3NHC(O)NHNH2 + 10H+ (C). The reaction exhibits autoinhibition by iodide and acid. Inhibition by I is due to the formation of the triiodide species, I, and inhibition by acid is due to the protonation of the sulfur center that deactivates it to further electrophilic attack. In excess iodate conditions, the stoichiometry of the reaction is 8IO + 5CH3NHC(S)NHNH2 + H2O → 4I2 + 5SO + 5CH3NHC(O)NHNH2 + 2H+ (D) that is a linear combination of processes A and B. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 193–203, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号