首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Thermodynamics and Kinetics of the Xa-Substitution of [W6Cl8]X6a(2?) and [Mo6Cl8]X6a(2?) Complexes; (X = Cl, Br, I) The title subject has been investigated in different solvent mixtures (see “Inhaltsübersicht”). In some cases the progress of the reaction has been followed by an emf method; in most cases the reaction was stopped after definite times by precipitation of the oxiniumsalts. Thermodynamics. For equilibria of the type (a) one finds the constant \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm C} = \frac{{[{\rm Br}^{\rm a} ][{\rm Cl}^ - ]}}{{[{\rm Cl}^{\rm a} ][{\rm Br}^ - ]}} $\end{document}, where [Bra] and [Cla] mark the total number of Br or Cl occupying Xa-positions of the complex. The Xa-positions are thermodynamically equivalent, the substitution proceeds statistically, so that the steps of reaction (a) with the equilibrium constants K1 to K6 are given by \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm K} = \frac{{{\rm W}({\rm hin})}}{{{\rm W}({\rm r\ddot uck})}} \cdot {\rm C} $\end{document} if W(hin) and W(rück) describe the probability of the forward and the back reaction. Similarly in some simple complexes (e. g. Irx62?);PdX42? the statistical effect plays a dominating role. The kinetics may be described as (b) The aquotation step is rate determining. Consequently the reaction of the first order. Rate constants for the forward and the reversed reaction between 0 and 25°C have been measured. The activation energy is ≈ 18 kcal. With the molybdenum complexes the Xa-substitutions is about 10 times faster as with the tungsten complexes.  相似文献   

2.
The dihydrates mentioned in the title are particularly suitable for the characterisation of the [Me6X] complex groups. Reported are the preparation of known and unknown compounds of this type. Lattice constants are given. The compounds are isotypic with the known structure of [Mo6Br8]Br4 · 2 H2O. Moreover, infrared data and the thermal decomposition of the compounds are reported.  相似文献   

3.
The Crystal Structures of the Dicesium Dodecahalogeno-closo-Dodecaborates Cs2[B12X12] (X = Cl, Br, I) and their Hydrates The perhalogenated derivatives Cs2[B12X12] (X = Cl - I) have been synthesized by reaction of Cs2[B12H12] with the respective elemental halogens (Cl2, Br2 and I2). Upon recrystallization from aqueous solution colourless, face-rich single crystals of the dihydrates (Cs2[B12X12] · 2 H2O) are obtained first which can be dehydrated topotactically via the monohydrates (Cs2[B12X12] · H2O) leaving to the solvent-free compounds (Cs2[B12X12]) behind without loss of their crystallinity. The ionic cesium salts were characterized by single crystal X-ray diffraction. All three halogenoborates are isostructural and they crystallize at room temperature in the trigonal space group (Cs2[B12Cl12]: a = 959.67(3) pm, c = 4564.2(2) pm; Cs2[B12Br12]: a = 997.92(3) pm, c = 4766.4(3) pm; Cs2[B12I12]: a = 1047.05(4) pm, c = 5018.3(3) pm; Z = 6). The crystal structures consist of a cubic closest packed host lattice formed by two crystallographically inequivalent quasi-icosahedral [B12X12]2- anions (Cs2[B12Cl12]: d(B-B) = 178 - 179 pm, d(B-Cl) = 179 - 180 pm; Cs2[B12Br12]: d(B-B) = 176 - 180 pm, d(B-Br) = 195 - 197 pm; Cs2[B12I12]: d(B-B) = 177 - 182 pm, d(B-I) = 214 - 217 pm). By ordered occupation of half of the tetrahedral and formally all octahedral interstices in every intermediate layer with Cs+ cations, a structure emerges where (Cs1)+ is trigonally non-planar coordinated by three (CN = 9) and (Cs2)+ tetrahedrally coordinated by four (CN = 12) [B12X12]2- anions. Thereby triangular faces of halogen atoms of the icosahedral clusters are coordinatively effective in both cases. In their mono- and dihydrates the incomplete coordination sphere of (Cs1)+ is completed by one and two water molecules, respectively. The thermal decomposition of the dicesium dodecahalogeno-closo-dodecaborate hydrates and their dehydration products was investigated using DTA/TG methods in a temperature range between room temperature and 1200 °C. Additionally the compounds were also characterized by 11B-NMR spectroscopy in aqueous solution.  相似文献   

4.
The Gadolinium Carbide Halides, Gd4C2X3 (X = Cl, Br) The compounds Gd4C2X3 (X = Cl, Br) and Tb4C2Br3 have been prepared by reaction of the metals (RE), REX3, and C in sealed Ta capsules at 1 100° and 1 300°C, respectively. Monophasic samples of Gd4C2Br3 and Tb4C2Br3 were obtained by reacting stoichiometric mixtures of the starting materials for five days. The needle shaped crystals are bronze-coloured and sensitive to air and moisture. Gd4C2X3 crystallizes in the space group Pnma (No. 62) with lattice constants a = 1 059.6(4), b = 368.4(1), c = 1 962.7(8) pm (Gd4C2Cl3), a = 1 084.4(1), b = 373.0(1), c = 2 036.1(1) pm (Gd4C2Br3). According to Guinier photographs, Tb4C2Br3 is isotypic (a = 1 074.3(2), b = 370.6(1), c = 2 019.4(1) pm). In the crystal structure C is octahedrally coordinated by Gd. The Gd6 octahedra are linked via common edges to form corrugated layers. The X-anions coordinate all free edges and corners of these layers and connect them via Xi? Xi contacts parallel [001]. Gd4C2Br3 shows metallic conductivity. The magnetic susceptibility follows at high temperatures a Curie Weiss law with an effective moment of 7.95 μB. At temperatures below 50 K antiferromagnetic order is observed.  相似文献   

5.
The reactions of Te2Br with MoOBr3, TeCl4 with MoNCl2/MoOCl3, and Te with WBr5/WOBr3 yield black, needle-like crystals of [Te15X4][MOX4]2 (M = Mo, W; X = Cl, Br). The crystal structure determinations [Te15Br4][MoOBr4]2: monoclinic, Z = 1, C2/m, a = 1595.9(4) pm, b = 403.6(1) pm, c = 1600.4(4) pm, β = 112.02(2)°; [Te15Cl4][MoOCl4]2: C2/m, a = 1535.3(5) pm, b = 402.8(2) pm, c = 1569.6(5) pm, β = 112.02(2)°; [Te15Br4][WOBr4]2: C2, a = 1592.4(4) pm, b = 397.5(1) pm, c = 1593.4(5) pm, β = 111.76(2)° show that all three compounds are isotypic and consist of one-dimensional ([Te15X4]2+)n and ([MOX4]?)n strands. The structures of the cationic strands are closely related to the tellurium subhalides Te2X (X = Br, I). One of the two rows of halogen atoms that bridges the band of condensed Te6 rings is stripped off, and additionally one Te position has only 75% occupancy which leads to the formula ([Te15X4]2+)n (X = Cl, Br) for the cation. The anionic substructures consist of tetrahalogenooxometalate ions [MOX4]? that are linked by linear oxygen bridges to polymeric strands. The compounds are paramagnetic with one unpaired electron per metal atom indicating oxidation state Mv, and are weak semiconductors.  相似文献   

6.
Three new series of mixed-ligand clusters of the [(M6X12)X2(RCN)4] (M=Nb, Ta; X=Cl, Br; R=Et, n-Pr, n-Bu) composition have been prepared. It is supposed that four nitrile molecules and two halogen atoms are coordinated to the terminal octahedral coordination sites of the [M6X12]2+ unit.  相似文献   

7.
Preparation of trans-[Mo6Cl8]Cl4Br22? Starting from Crystalline [Mo6Cl8]Cl4(H2O)2 and Crystal Structure of [(C6H5)4As]2[Mo6Cl8]Cl4Br2 The synthesis of the title compound is successful if the crystallized [(Mo6Cl8)Cl4(H2O)2] containing the H2O molecules in trans-position reacts with HBr + [(C6H5)4As]Br in ethanol in a heterogeneous reaction. The X-ray structure investigation confirms the existence of discrete trans-Br-substituted cluster anions of composition [(Mo6Cl8)Cl4Br2]2? in the crystal. The reaction in homogeneous solutions proceeds to Br-enriched compounds. [(C6H5)4As]2[(Mo6Cl8)Cl4Br2] crystallizes in the triclinic space group P¯1 with a = 11.071(2), b = 11.418(2), c = 12.813(2) Å, α = 116.10(2), β = 95.27(2) and γ = 94.41(2)° (?133°C). The crystal structure at ?133°C was determined from single crystal X-ray diffraction data (R1 = 0.026). The [(Mo6Cl8)Cl4Br2]2?-anions are not completely ordered but distributed statistically among the three positions which are possible within the limits of the ordered [Mo6Cl8]-cores (ratio 11:5:4). The frameworks of the anions consist of Mo6 cluster units with (slightly distorted) octahedral arrangement of the metal atoms (d(Mo? Mo): 2.600(1) up to 2.614(1) Å), which are coordinated by the halogeno ligands in a square-pyramidal manner. The details of the structure will be discussed and compared with similar [(Mo6X8)Y4] cluster units (X, Y ? Cl, Br).  相似文献   

8.
Reaction of [Mo6Cl8]X4 with N-Bases [Mo6Cl8]X4 (X = Cl, Br, I) in ethanol solution by titration with Ag+ showed 4 labil X atoms. The displacement of X? especially by F? accelerates the titration decisively. Conductivity measurements in ethanol or acetone showed that [Mo6Cl8]X4 at 25°C behave as weak 1:1-electrolytes. Solutions of [Mo6Cl8]X4 in DMF heated up to 60°C and than lowered to 25°C showed that the compounds in this solvent behave as (potential) strong 2:1-valent electrolytes. From the following compounds the labil halides have been determined by titration with Ag+: [Mo6Cl8]X4(Py)2 (X = Cl, Br), [Mo6Cl8]X4(bipy)2 (X = Cl, Br, I), [Mo6Cl8]X4(Phenpy)2 (X = Cl, Br, I), (PyH)2[Mo6Cl8]X6 (X = Cl, Br); (bipyH)2[Mo6Cl8]I4Cl2. Always 4 (respectively 6) labil halides have been observed; exception [Mo6Cl8]Cl4(Py)2 in acetone (2 labil Cl). Lattice constants and mole volumina for the adducts with pyridin and bipyridin have been determined. The adducts with bipyridin and phenylpyridin are isotypic. Conductivity measurements have been made in different solutions. The decomposition on the thermobalance showed that in [Mo6Cl8]Cl4(Py)2 the bond of pyridin is weak. The 2 pyridin molecules are evolved at the same time. However [Mo6Cl8]I4(Bipy)2 loses 1 bipyridin only. (PyH)2[Mo6Cl8]X6 formed during the first decomposition step the novel compounds (PyH) [Mo6Cl8]X5 (X = Cl, Br). Both compounds are isotypic. They behave in ethanol solution as strong 1:1-valent electrolytes.  相似文献   

9.
Resonance Raman spectra of the cubic metal-halide complexes having the general formula [M(6)X(8)Y(6)](2)(-) (M = Mo or W; X, Y = Cl, Br, or I) are reported. The three totally symmetric fundamental vibrations of these complexes are identified. The extensive mixing of the symmetry coordinates that compose the symmetric normal modes expected in these systems is not observed. Instead the "group-frequency" approximation is valid. Furthermore, the force constants of both the apical and face-bridging metal-halide bonds are insensitive to the identity of either the metal or the halide. Raman spectra of related complexes with methoxy and benzenethiol groups as ligands are reported along with the structural data for [Mo(6)Cl(8)(SPh)(6)][NBu(4)](2). Crystal data for [Mo(6)Cl(8)(SPh)(6)][NBu(4)](2) at -156 degrees C: monoclinic space group P2(1)/c; a = 12.588(3), b = 17.471(5), c = 20.646(2) ?; beta = 118.53(1) degrees, V = 3223.4 ?(3); d(calcd) = 1.664 g cm(-)(3); Z = 2.  相似文献   

10.
The addition of halide anions (X' = Cl(-), Br(-), or I(-)) to perhalocyclohexasilane Si(6)X(12) (X = Cl or Br) led to the formation of complexes comprising [Si(6)X(12)X'(2)](2-) dianions. An upfield shift in the (29)Si NMR spectra was noted upon coordination, and structural determination by X-ray crystallography showed that the dianions adopt an "inverse sandwich" structure where the six cyclic silicon atoms form a planar hexagon with the two halide anions X' located on the 6-fold axis equally disposed above and below the plane of the Si(6) ring. Additionally, these apical X' atoms are within the van der Waals bonding distance to the silicon ring atoms, indicating a strong interaction between X' and silicon atoms. These results detail crystallographic variations within the halogen series providing further insight into the nature of the Lewis acid sites above and below the Si(6)X(12) ring, where interactions with hard Lewis bases such as halide anions are observed. Interestingly, the stereochemistry of the silicon atoms in [Si(6)X(12)X'(2)](2-) is not affected much by the size or electronegativity of the halogen atoms.  相似文献   

11.
Pb2PdX6 (X = Cl, Br) – Compounds with Elongated [PdX6] Octahedra In contradiction to published data new compounds in the systems PbX2—PdX2 (X = Cl, Br) with the formula Pb2PdCl6 (I) and Pb2PdBr6 (II) were found. These were synthesized by thermal treatment of the corresponding mixtures of PbX2 and PdX2 (X = Cl, Br). X-ray single crystal structure analysis shows isotypism of I and II, monoclinic, P21/c (No. 14), Z = 2, I: a = 9.037(2) Å, b = 6.224(1) Å, c = 8.162(1) Å, β = 90.31(7)β, II: a = 9.512(7) Å, b = 6.584(8) Å, c = 8.383(3) Å, β = 90.07(5)º. Strongly elongated PdX6 octahedra are found in the crystal structure. Additional characterisation of the compounds was done by DTA, IR/RAMAN spectra and 207Pb MAS NMR investigations. Remarcable low field shifts were found for 207Pb.  相似文献   

12.
Cubic [Ta6Br12(H2O)6][CuBr2X2]·10H2O and triclinic [Ta6Br12(H2O)6]X2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O (X = Cl, Br, NO3) cocrystallize in aqueous solutions of [Ta6Br12]2+ in the presence of Cu2+ ions. The crystal structures of [Ta6Br12(H2O)6]Cl2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 1 ) and [Ta6Br12(H2O)6]Br2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 3 )have been solved in the triclinic space group P&1macr; (No. 2). Crystal data: 1 , a = 9.3264(2) Å, b = 9.8272(2) Å, c = 19.0158(4) Å, α = 80.931(1)?, β = 81.772(2)?, γ = 80.691(1)?; 3 , a = 9.3399(2) Å, b = 9.8796(2) Å, c = 19.0494(4) Å; α = 81.037(1)?, β = 81.808(1)?, γ = 80.736(1)?. 1 and 3 consist of two octahedral differently charged cluster entities, [Ta6Br12]2+ in the [Ta6Br12(H2O)6]2+ cation and [Ta6Br12]4+ in trans‐[Ta6Br12(OH)4(H2O)2]. Average bond distances in the [Ta6Br12(H2O)6]2+ cations: 1 , Ta‐Ta, 2.9243 Å; Ta‐Bri , 2.607 Å; Ta‐O, 2.23 Å; 3 , Ta‐Ta, 2.9162 Å; Ta‐Bri , 2.603 Å; Ta‐O, 2.24 Å. Average bond distances in trans‐[Ta6‐Br12(OH)4(H2O)2]: 1 , Ta‐Ta, 3.0133 Å; Ta‐Bri, 2.586 Å; Ta‐O(OH), 2.14 Å; Ta‐O(H2O), 2.258(9) Å; 3 , Ta‐Ta, 3.0113 Å; Ta‐Bri, 2.580 Å; Ta‐O(OH), 2.11 Å; Ta‐O(H2O), 2.23(1) Å. The crystal packing results in short O···O contacts along the c axes. Under the same experimental conditions, [Ta6Cl12]2+ oxidized to [Ta6Cl12]4+ , whereas [Nb6X12]2+ clusters were not affected by the Cu2+ ion.  相似文献   

13.
Contributions to the Chemistry of Niobium and Tantalum. 88. Cluster Hydroxides [M6X12](OH)2 · 8 H2O with M = Nb, Ta; X = Cl, Br The cluster hydroxides [M6X12](OH)2 · 8 H2O with M = Nb, Ta; X = Cl, Br, have been prepared. The poor crystalline compounds could not be classified in any of the four general structure patterns of the niobium and tantalum halide compounds. Infrared spectra, magnetic and thermal behaviours of the compounds have been measured and discussed.  相似文献   

14.
15.
Crystal Structure of the Hexaquomagnesiumhexahalogenodimercurates [Mg(OH2)6][Hg2X6] (X = Br, I) Hexaquodimercurates [Mg(OH2)6][Hg2X6] (X = Br, I) were obtained by crystallization from aqueous solutions of HgX2 and MgX2. The crystal structure of the monoclinic compounds consists of binuclear Hg2X6 anions and octahedral Mg(OH2)6 cations.  相似文献   

16.
The molecular and electronic structures of trinuclear face-shared [M3X12]3-species of Mo (X = F, Cl, Br, I) and W (X = Cl), containing linear chains of metal atoms, have been investigated using density functional theory. The possibility of variations in structure and bonding has been explored by considering both symmetric (D3d) and unsymmetric (C3v) forms, the latter having one long and one short metal-metal distance. Analysis of the bonding in the structurally characterized [Mo3I12]3- trimer reveals that the metal-metal interaction qualitatively corresponds to a two-electron three-center sigma bond between the Mo atoms and, consequently, a formal Mo-Mo bond order of 0.5. However, the calculated spin densities suggest that the electrons in the metal-metal sigma bond are not fully decoupled and therefore participate in the antiferromagnetic interactions of the metal cluster. Although the same observation applies to [Mo3X12]3- (X = Br, Cl, F) and [W3Cl12]3-, both the spin densities and shorter distances between the metal atoms indicate that the metal-metal interaction is stronger in these systems. The broken-symmetry approach combined with spin projection has been used to determine the energy of the low-lying spin multiplets arising from the magnetic coupling between the metal centers. Either the symmetric and unsymmetric S = 3/2 state is predicted to be the ground state for all five systems. For [Mo3X12]3- (X = Cl, Br, I), the symmetric form is more stable but the unsymmetric structure, where two metal centers are involved in a metal-metal triple bond while the third center is decoupled, lies close in energy and is thermally accessible. Consequently, at room temperature, interconversion between the two energetically equivalent configurations of the unsymmetric form should result in an averaged structure that is symmetric. This prediction is consistent with the reported structure of [Mo3I12]3-, which, although symmetric, indicates significant movement of the central Mo atom toward the terminal Mo atoms on either side. In contrast, unsymmetric structures with a triple bond between two metal centers are predicted for [Mo3F2]3- and [W3C12]3-, as the symmetric structure lies too high in energy to be thermally accessible.  相似文献   

17.
18.
The crystal structures of five isotypic hexagonal compounds with general formulaMAs4O6 X [M=K, NH4;X=Cl, Br, I; space group: P622;Z=1] were determined from 370 single crystal X-ray data and refined toR values <0.05. The structure type is characterized by neutral charged [As2O3] sheets arranged parallel (00.1). The As atoms of neighbouring two sheets point to each other and the sheets are combined by interlayeredM andX atoms, respectively. TheM atoms are coordinated to twelve oxygen atoms, theX atoms are coordinated to twelve arsenic atoms. In both cases the coordination polyhedron is a hexagonal prism. The compounds were synthesized by thermal treatments of cubic As2O3 and potassium or ammonium haloids in a saturated aqueous solution of potassium acetate resp. ammonia [500 K, saturation vapour pressure].
Die Verbindungen KAs4O6 X (X=Cl, Br, I) und NH4As4O6 X (X=Br, I): Hydrothermalsynthese und Strukturbestimmung
Zusammenfassung Die Kristallstrukturen der fünf isotypen hexagonalen Verbindungen mit der allgemeinen FormelMAs4O6 X [M=K, NH4;X=Cl, Br, I; Raumgruppe: P622;Z=1] wurden anhand von 370 Einkristall-Röntgendaten bestimmt und aufR-Werte <0.05 verfeinert. Der Strukturtyp ist ausgezeichnet durch neutrale [As2O3]-Schichten, die parallel (00.1) angeordnet sind. Die As-Atome zweier benachbarter Schichten weisen jeweils aufeinander zu, und die Schichten selbst werden durch zwischengelagerteM- bzw.X-Atome verbunden. DieM-Atome werden jeweils von zwölf O-Atomen, dieX-Atome von zwölf As-Atomen umgeben. Das Koordinationspolyeder ist in beiden Fällen ein hexagonales Primsa. Die einzelnen Verbindungen wurden unter Hydrothermalbedingungen aus kubischem As2O3 und dem jeweiligen Kalium- oder Ammoniumhalogenid in einer gesättigten wäßrigen Lösung von Kaliumacetat bzw. Ammoniak synthetisiert (500 K, Sättigungsdampfdruck).
  相似文献   

19.
Beyond the Conventional Number of Electrons in M6X12 Type Metal Halide Clusters: W6Cl18, (Me4N)2[W6Cl18], and Cs2[W6Cl18] Black octahedral single crystals of W6Cl18 were obtained by reducing WCl4 with graphite in a silica tube at 600 °C. The single crystal structure refinement (space group R 3¯, Z = 3, a = b = 1498.9(1) pm, c = 845.47(5) pm) yielded the W6Cl18 structure, already reported on the basis of X‐ray powder data. (Me4N)2[W6Cl18] and Cs2[W6Cl18] were obtained from methanolic solutions of W6Cl18 with Me4NCl and CsCl, respectively. The structure of (Me4N)2[W6Cl18] was refined from X‐ray single crystal data (space group P 3¯m1, Z = 1, a = b = 1079.3(1) pm, c = 857.81(7) pm), and the structure of Cs2[W6Cl18] was refined from X‐ray powder data (space group P 3¯, Z = 1, a = b = 932.10(7) pm, c = 853.02(6) pm). The crystal structure of W6Cl18 contains molecular W6Cl18 units arranged as in a cubic closest packing. The structures of (Me4N)2[W6Cl18] and Cs2[W6Cl18] can be considered as derivatives of the W6Cl18 structure in which 2/3 of the W6Cl18 molecules are substituted by Me4N+ ions and Cs+ ions, respectively. The conventional number of 16 electrons/cluster is exceeded in these compounds, with 18 electrons for W6Cl18 and 20 electrons for (Me4N)2[W6Cl18] and Cs2[W6Cl18]. Cs2[W6Cl18] exhibits temperature independent paramagnetic behaviour.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号