首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
电子显微镜观察表明,以乙丙橡胶(EPR)为主干,聚苯乙烯(PS)为支链的接枝共聚物EPR-g-PS的基本形态是高度分散的聚苯乙烯微区(约几百?)存在于乙丙橡胶连续相中的两相体系,随接枝共聚物中聚苯乙烯含量增加,微区形态发生变化,少量的接枝共聚物在PS与EPR共混物中起“增容剂”作用,使分散相微区变得小而均匀,多重玻璃化转变的存在进一步证实了接枝共聚物相分离的形态结构。  相似文献   

2.
使用了由大分子单体共聚合制备的以乙丙橡胶(EPR)为主干、聚苯乙烯(PS)为支链的接枝共聚物EPR-g-PS作为PS/EPDM共混体系的增容剂。实验结果表明,共混体系的组成、增容剂加入量以及增容剂分子结构对共混体系冲击强度有很大影响。将这些因素与相差显微镜及扫描电镜研究所揭示的共混物形态的变化相联系,对此类接校共聚物作为不相容体系增容剂的机理作了探讨。  相似文献   

3.
大分子单体(macromer)共聚合为合成结构确定的接枝共聚物提供了新途径,但用络合催化剂进行共聚的例子很少。前文报导了末端为降冰片烯(NB)的聚苯乙烯大分子单体PS-NB的合成及表征;现报告其与乙烯的共聚,以制备主干为聚乙烯(PE)、支链为聚苯乙烯(PS)的接枝共聚物PE-g-PS的初步结果。  相似文献   

4.
A series of comb-like poly(phenylene oxide)s (PPO) graft copolymers with controlled grafting density and length of grafts were synthesized by atom transfer radical polymerization (ATRP). The α-bromo-poly(2,6-dimethyl-1,4-phenylene oxide)s (BPPO) were used as macroinitiators to polymerize vinyl monomers and the graft copolymers carrying polystyrene (PS), poly(p-acetoxystyrene) (PAS), and poly(methyl methacrylate) (PMMA) as side chains were synthesized and characterized by NMR, FTIR, GPC, DSC and TGA. The composition-dependent glass-transition temperatures (Tg) of PPO-g-PS exhibited good correlation with theoretical curve in Couchman equations except for the cases of low PS content (<40 mol%) copolymers in which a positive deviation was observed due to enhanced molecular interactions. The increase in monomer/initiator ratio led to the increase of degree of polymerization and the decrease of polydispersity. Despite the immiscibility nature between PPO and PMMA, the PPO-g-PMMA exhibited enhanced compatibilization as apparent single Tg in a wide temperature window throughout various compositions revealing an efficient segmental mixing on a molecular scale due to grafting structure.  相似文献   

5.
PP-g-PS copolymers were synthesized with the same polypropylene (PP) backbones and various side chain lengths of PS sequences via reactive comonomer p-allyltoluene (p-AT) by Ziegler–Natta copolymerization and the subsequent living anionic graft-polymerization. 1H NMR characterized that the PP-g-PS copolymer had grafted 3.15 side chains per 1000 carbons in the PP backbones and the length of PS sequences varied in the range of 25.8–309.9 units. PP/PS blends with the PP-g-PS copolymer as compatibilizer (wt. 75/25/5) were prepared and characterized by SEM, WAXD and DMA to investigate the morphologies, crystallinity and glass transition temperatures of the PP/PS blends. All the results pointed out that the average side chain length (GL) of the graft copolymer (GL is from 25.8 to 309.9) made great effects of the PP/PS blends, such as the PS dispersed phase, the crystallinity of the PP component and the two glass transition temperatures of the blends, which showed the same trend with the increase of the GL. Overall, only with a suitable average side chain length, the PP-g-PS copolymer could achieve optimal compatibilizing efficiency of the PP/PS blends.  相似文献   

6.
Graft and star copolymers having poly(methacrylate) backbone and ethylene–propylene random copolymer (EPR) branches were successfully synthesized by radical copolymerization of an EPR macromonomer with methyl methacrylate (MMA). EPR macromonomers were prepared by sequential functionalization of vinylidene chain‐end group in EPR via hydroalumination, oxidation, and esterification reactions. Their copolymerizations with MMA were carried out with monofunctional and tetrafunctional initiators by atom transfer radical polymerization (ATRP). Gel‐permeation chromatography and NMR analyses confirmed that poly(methyl methacrylate) (PMMA)‐g‐EPR graft copolymers and four‐arm (PMMA‐g‐EPR) star copolymers could be synthesized by controlling EPR contents in a range of 8.6–38.1 wt % and EPR branch numbers in a range of 1–14 branches. Transmission electron microscopy of these copolymers demonstrated well‐dispersed morphologies between PMMA and EPR, which could be controlled by the dispersion of both segments in the range between 10 nm and less than 1 nm. Moreover, the differentiated thermal properties of these copolymers were demonstrated by differential scanning calorimetry analysis. On the other hand, the copolymerization of EPR macromonomer with MMA by conventional free radical polymerization with 2,2′‐azobis(isobutyronitrile) also gave PMMA‐g‐EPR graft copolymers. However, their morphology and thermal property remarkably differed from those of the graft copolymers obtained by ATRP. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5103–5118, 2005  相似文献   

7.
The synthesis and ring-opening copolymerization of epoxy-terminated polystyrene (PS-ep) macromer with epichlorohydrin (ECH) as well as some properties of the graft copolymers, were studied. The results showed that content of the epoxy-terminated macromer in the crude macromer can be increased by anionic polymerization of styrene in cyclohexane, and capping with propylene sulfide, followed by termination with ECH at 0 °C. The ring-opening copolymerization of ECH with the macromer can be performed by using a quaternary catalyst system which was composed of triisobutyl aluminium-phosphoric acid-water-amine in the molar ratio of 1:0.25:0.25:0.1-0.15. When the charging weight percentage of PS-ep/ECH=25-65% and Mn of PS-ep was 2.6-10×103, the conversion of ECH was greater than 95% and the conversion of the macromer or grafting efficiency was 35-65%. The purified copolymer was characterized by IR, 1H NMR and dynamic viscoelastometer to be a copolymer of ECH with polystyrene (PS) grafts. Transmission electron microscope showed the existence of PS domains in the continuous phase of polyepichlorohydrin (PECH). In a certain range of compositions the graft copolymer behaves like a thermoplastic elastomer. The graft copolymer can be melted and processed repeatedly. Its oil and solvent resistance were better than PS and similar to PECH rubber. The graft copolymer can be used as a compatibilizer for blending PECH with PS to form thermoplastic elastomer blends. Only 2% of it based on the blend is needed to raise the tensile strength of the blends obviously.  相似文献   

8.
Functionalization of polyolefins is an industrially important yet scientifically challenging research subject. This paper summarizes our recent effort to access structurally well-defined functional polypropylenes via transition metal-mediated olefin polymerization. In one approach, polypropylenes containing side chain functional groups of controlled concentrations were obtained by Ziegler-Natta-catalyzed copolymerization of propylene in combination with either living anionic or controlled radical polymerization of polar monomers. The copolymerization of propylene with 1,4-divinylbenzene using an isospecific MgCl2-supported TiCl4 catalyst yielded polypropylenes containing pendant styrene moieties. Both metalation reaction with n-butyllithium and hydrochlorination reaction with dry hydrogen chloride selectively and quantitatively occurred at the pendant reactive sites, generating polymeric benzyllithium and 1-chloroethylbenzene species. These species initiated living anionic polymerization of styrene (S) and atom transfer radical polymerization (in the presence of CuCl and pentamethyldiethylenetriamine) of methyl methacrylate (MMA), respectively, resulting in functional polypropylene graft copolymers (PP-g-PS and PP-g-PMMA) with controllable graft lengths. In another approach, chain end-functionalized polypropylenes containing a terminal OH-group with controlled molecular weights were directly prepared by propylene polymerization with a metallocene catalyst through a selective aluminum chain transfer reaction. Both approaches proved to be desirable polyolefin functionalization routes in terms of efficiency and polymer structure controllability.  相似文献   

9.
Isotactic polypropylene-based graft copolymers linking poly(methyl methacrylate), poly(n-butyl acrylate) and polystyrene were successfully synthesized by a controlled radical polymerization with isotactic polypropylene (iPP) macroinitiator. The hydroxylated iPP, prepared by propylene/10-undecen-1-ol copolymerization with a metallocene/methyl-aluminoxane/triisobutylaluminum catalyst system, was treated with 2-bromoisobutyryl bromide to produce a Br-group containing iPP (PP-g-Br). The resulting PP-g-Br could initiate controlled radical polymerization of methyl methacrylate, n-butyl acrylate and styrene by using a copper catalyst system, leading to a variety of iPP-based graft copolymers with a different content of the corresponding polar segment. These graft copolymers demonstrated unique mechanical properties dependent upon the kind and content of the grafted polar segment.  相似文献   

10.
将阴离子聚合所得末端带有烯丙基的窄分布聚苯乙烯大分子单体(PSallyl)与乙烯、丙烯在钒催化体系下进行共聚合,得到聚苯乙烯(PS)支链沿乙丙橡胶(EPR)主干无规分布的接枝共聚物EPR-g-PS。接枝效率为70%左右。大分子单体的分子量、加入量,催化剂浓度和聚合温度等对共聚反应及其产物结构有明显的影响。丁酮为选择沉淀剂可分离未反应的聚苯乙烯大分子单体。用紫外光谱、核磁共振、渗透压和凝胶渗透色谱法测定了纯制接枝共聚物的组成和分子量。结果表明所合成的EPR-g-PS的聚苯乙烯含量为5—45%;支链为分子量1.0—7.8×10~4的窄分布((?)=1.05—1.17)聚苯乙烯;平均支链数为1—4。  相似文献   

11.
朱长进 《高分子科学》2014,32(2):151-162
A novel series of polyphosphazene-grafl-polystyrene (PP-g-PS) copolymers were successfully prepared by atom transfer radical polymerization (ATRP) of styrene monomers and brominated poly(bis(4-methylphenoxy)phosphazene) macroinitiator. The graft density and the graft length could be regulated by changing the bromination degree of the macroinitiator and the ATRP reaction time, respectively. The PP-g-PS copolymers readily underwent a regioselective sulfonation reaction, which occurred preferentially at the polystyrene sites, producing the sulfonated PP-g-PS copolymers with a range of ion exchange capacities. The resulting sulfonated PP-g-PS membranes prepared by solution casting showed high water uptake, low water swelling and considerable proton conductivity. They also exhibited good oxidative stability and high resistance to methanol crossover. Morphological studies of the membranes by transmission electron microscopy showed clear nanophase-separated structures resulted from hydrophobic polyphosphazene backbone and hydrophilic polystyrene sulfonic acid segments, indicating the formation of proton transferring tunnels. Therefore, these sulfonated copolymers may be candidate materials for proton exchange membranes in direct methanol fuel cell (DMFC) applications.  相似文献   

12.
刘沿  谢洪泉 《高分子学报》2000,27(3):325-329
用大单体技术合成了带规整聚苯乙烯支链的聚丙烯酸接枝共聚物 .研究了各种聚合条件包括温度、时间、单体浓度、大单体分子量及大单体与小单体的投料比等对接枝效率、共聚物分子量的影响 .纯化的共聚物表现出良好的乳化性质及高吸水率 ,在稀溶液中的行为如同聚电解质 .此接枝共聚物与含规整聚氧乙烯支链的聚丙烯酸乙酯络合生成的大分子间络合物膜呈现化学阀的作用 ,水通过它的渗透速率能通过调节pH加以可逆地控制 .  相似文献   

13.
Anthracene‐functionalized oxanorbornene monomer and oxanorbornenyl polystyrene (PS) with ω‐anthracene end‐functionalized macromonomer were first polymerized via ring‐opening metathesis polymerization using the first‐generation Grubbs' catalyst in dichloromethane at room temperature and then clicked with maleimide end‐functionalized polymers, poly(ethylene glycol) (PEG)‐MI, poly(methyl methacrylate) (PMMA)‐MI, and poly(tert‐butyl acrylate) (PtBA)‐MI in a Diels–Alder reaction in toluene at 120 °C to create corresponding graft copolymers, poly(oxanorbornene)‐g‐PEG, poly(oxanorbornene)‐g‐PMMA, and graft block copolymers, poly(oxanorbornene)‐g‐(PS‐b‐PEG), poly(oxanorbornene)‐g‐(PS‐b‐PMMA), and poly(oxanorbornene)‐g‐(PS‐b‐PtBA), respectively. Diels–Alder click reaction efficiency for graft copolymerization was monitored by UV–vis spectroscopy. The dn/dc values of graft copolymers and graft block copolymers were experimentally obtained using a triple detection gel permeation chromatography and subsequently introduced to the software so as to give molecular weights, intrinsic viscosity ([η]) and hydrodynamic radius (Rh) values. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

14.
A novel grafted copolymer with two different types of side chains was synthesized via a combination of grafting-onto and grafting-from strategy. Graft copolymer with one side chains polybutadiene-graft-polystyrene (PB-g-PS) was first synthesized though the grafting-onto method. Following the subsequent grafting-from method, the second kind of side chain was introduced to the copolymer with anionic ring open polymerization of ethylene oxide, obtaining dual-grafted copolymer polybutadiene-graft-(polystyrene; poly(ethylene oxide)) (PB-g-(PS;PEO)). By this combined strategy, linear and star-shaped dual-grafted copolymer were synthesized. The resulting dual-grafted copolymers had controlled molecular weights and narrow molecular weight distributions (Mw/Mn < 1.20). The thermal behavior of this dual-grafted copolymer bearing glassy and crystalline side chains was determined by differential scanning calorimetry (DSC), revealing that poly(ethylene oxide) grafts underwent confined crystallization, and the star-shaped copolymer had more confinement effects than did the linear ones.  相似文献   

15.
Polysulfone‐g‐poly(N‐isopropylacrylamide) (PSf‐g‐PNIPAAm) graft copolymers were prepared from atom transfer radical polymerization of NIPAAm using chloromethylated PSf as a macro‐initiator. The chain lengths of PNIPAAm of the graft copolymers were controllable with polymerization reaction time. The chemical structures of the graft copolymers were characterized with FTIR, NMR, and elemental analysis and their amphiphilic characteristics were examined and discussed. The PSf‐g‐PNIPAAm graft copolymers and the nanoparticles made from the graft copolymers exhibited repeatable temperature‐responsive properties in heating–cooling cycles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4756–4765, 2008  相似文献   

16.
Well defined graft copolymers are prepared by “grafting from” atom transfer radical polymerization (ATRP) at room temperature (30 °C). The experiments were aimed at grafting methacrylates and styrene at latent initiating sites of polystyrene. For this purpose, the benzylic hydrogen in polystyrene was subjected to allylic bromination with N‐bromosuccinimide and azobisisobutrylnitirle to generate tertiary bromide ATRP initiating sites (Br? C? PS). The use of Br? C? PS with lesser mol % of bromide initiating groups results in better control and successful graft copolymerization. This was used to synthesize a series of new graft copolymers such as PS‐g‐PBnMA, PS‐g‐PBMA, PS‐g‐GMA, and PS‐g‐(PMMA‐b‐PtBA) catalyzed by CuBr/PMDETA system, in bulk, at room temperature. The polymers are characterized by GPC, NMR, FTIR, TEM, and TGA. Graft copolymerization followed by block polymerization enabled the synthesis of highly branched polymer brush, in which the grafting density can be adjusted by appropriate choice of bromide concentration in the polystyrene. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3818–3832, 2007  相似文献   

17.
The potyelectrolyte of propane sulfonate(PS) grafted PPTA copolymers——PPTA-PS, PPTA[O]-PS, PPTA[C]-PS were prepared and used as electrolyte in the process of electrochemical polymerization of pyrrole to form the molecular composite polypyrrole (PPY)/Polyelectrolyte.The preparation and liquid crystalline property of three kinds of polyelectrolyte, the electrical conductivity, mechanical properties, SEM and thermoproperties of PPY/polyelectrolyte are presented in detail.  相似文献   

18.
In this study, graft copolymers with regular graft points containing polystyrene (PS) backbone and poly(methyl methacrylate) (PMMA), poly(tert‐butyl acrylate) (PtBA), or poly (ethylene glycol) (PEG) side chains were simply achieved by a sequential double polymer click reactions. The linear α‐alkyne‐ω‐azide PS with an anthracene pendant unit per chain was produced via atom transfer radical polymerization of styrene initiated by anthracen‐9‐ylmethyl 2‐((2‐bromo‐2‐methylpropanoyloxy)methyl)‐2‐methyl‐3‐oxo‐3‐(prop‐2‐ynyloxy) propyl succinate. Subsequently, the azide–alkyne click coupling of this PS to create the linear multiblock PS chain with pendant anthracene sites per PS block, followed by Diels–Alder click reaction with maleimide end‐functionalized PMMA, PtBA, or PEG yielded final PS‐g‐PMMA, PS‐g‐PtBA or PS‐g‐PEG copolymers with regular grafts, respectively. Well‐defined polymers were characterized by 1H NMR, gel permeation chromatography (GPC) and triple detection GPC. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
唐涛 《高分子科学》2014,32(3):333-349
Effects of branches on the crystallization kinetics of polypropylene-g-polystyrene(PP-g-PS) and polypropylene-gpoly(n-butyl acrylate)(PP-g-PnBA) graft copolymers with well-defined molecular structures were systematically investigated by DSC.The Avrami equation was used to analyze the isothermal crystallization process,while the analysis of nonisothermal crystallization process was based on the Jeziorny-modified Avrami model and Mo model.The kinetics results of isothermal and nonisothermal crystallization verified the peculiar effects of branches on the crystallization process of PP backbones in PP-g-PS and PP-g-PnBA graft copolymers:on one hand,the interaction between branches(π-π interaction between PS branches,or dipole-dipole interaction between PnBA branches) restrained the mobility and reptation ability of the PP backbones,which hindered the crystallization process;on the other hand,the heterogeneous nucleation effect resulting from the branched structure and fluctuation-assisted nucleation mechanism(caused by microphase separation between the PS or PnBA rich phase and the PP rich phase) became more pronounced with increasing branch length,which facilitated the crystallization process.  相似文献   

20.
In this work, the evolution of the morphology of polypropylene/polystyrene/poly(methyl metacrylate) (PP/PS/PMMA) blends to which graft copolymers polypropylene-graft-polystyrene (PP-g-PS) of 2 compositions (55/45 and 70/30), polypropylene-graft-poly(methyl metacrylate) (PP-g-PMMA), or styrene-block-(ethylene- co-butadiene)-block-styrene (SEBS) was added has been studied. The ternary blends morphologies were predicted using phenomenological models that predict the morphology of ternary blends as a function of the interfacial tension between the blend components (spreading coefficient and free energy minimization). All blends studied presented a core-shell morphology with PS as shell and PMMA as core. The addition of PP-g-PS or SEBS resulted in a reduction of the size of the PS shell phase and, the addition of PP-g-PMMA did not seem to have any effect on the diameter of PMMA. The difference observed between the different morphologies relied on the number of droplets of core within the shell. All the phenomenological models predictions corroborated the experimental results, except when PP-g-PMMA was added to the blend.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号