首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Triorganoantimony and Triorganobismuth Derivatives of 2-Pyridinecarboxylic Acid and 2-Pyridylacetic Acid. Crystal and Molecular Structures of (C6H5)3Sb(O2C-2-C5H4N)2 and (CH3)3Sb(O2CCH2-2-C5H4N)2 Triorganoantimony and triorganobismuth dicarboxylates R3M(O2C-2-C5H4N)2 (M = Sb, R = CH3, C6H5, 4-CH3OC6H4; M = Bi, R = C6H5, 4-CH3C6H4) and (CH3)3Sb(O2CCH2-2-C5H4N)2 have been prepared from (CH3)3Sb(OH)2, R3SbO (R = C6H5, 4-CH3OC6H4), or R3BiCO3 (R = C6H5, 4-CH3C6H4) and the appropriate heterocyclic carboxylic acid. Vibrational spectroscopic data indicate a trigonal bipyramidal environment of M the O(? C)-atoms of the carboxylate ligands being in the apical and three C atoms (of R) in the equatorial positions; in addition coordinative interaction occurs in the 2-pyridinecarboxylates between M and O(?C) of one and N of the other carboxylate ligand and in (CH3)3)Sb(O2CCH2-2-C5H4N)2 between Sb and O(?C) of both carboxylate ligands. (C6H5)3Sb(O2C-2-C5H4N)2/(CH3)3Sb(O2CCH2-2-C5H4N)2 crystallize monoclinic [space group P21/c/P21/n; a = 892.6(9)/1043.4(6), b = 1326.9(6)/3166.2(18), c = 2233.1(9)/1147.5(7) pm, β = 99.74(8)°/97.67(5)° Z = 4/8; d(calc.) = 1.522/1.553 × Mg m?3; Vcell = 2606.7 × 106/3757.0 × 106pm3, structure determination from 3798/4965 independent reflexions (F ≥ 4.0 σ(F))/(I ≥ 1.96 σ(I), R(unweighted) = 0.024/0.036]. Sb is bonding to three C6H5/CH3 groups in the equatorial plane [mean distances Sb? C: 212.2(3)/208.7(6) pm] and two carboxylate ligands via O in the apical positions [Sb? O distances: 218.5(2), 209.9(2)/212.1(3), 213.2(3) pm]. In (C6H5)3Sb(O2C-2-C5H4N)2 there is a short Sb? O(?C) and a short Sb? N contact [Sb? O: 272.1(2), Sb? N: 260.2(2) pm] and distoritions of the equatorial angles [C? Sb? C: 99.2(1)°, 158.2(1)°, 102.0(1).] and of the axial angle [O? Sb? O: 169.9(1)°], and in (CH3)3Sb(O2CCH2-2-C5H4N)2, which contains two different molecules in the asym-metric unit, there are two Sb? O(?C) contacts [Sb? O, mean: 302.2(4), and 310.7(4)pm, respectively] and distortions of the equatorial angles [C? Sb? C: 114.5(2)°, 132.4(3)° 113.1(2)°, and 123.9(3)° 115.5(2)°, 120.6(3)°, respectively] and of the axial angles [O? Sb? O: 174,9(1)°, 177.9(1)°, respectively].  相似文献   

2.
Inhaltsübersicht. Triorganoantimon- und Triorganobismutdicarboxylate R3M[O2C(CH2)n-2-C4H3X]2 (M = Sb, R = CH3, C6H11, C6H5, 4-CH3OC6H4; M = Bi, R = C6H5, 4-CH3C6H4; n = 0, X = O, S, NH, NCH3. M = Sb, R = CH3, C6H5; M = Bi, R = C6H5; n = 1, X = O, S. M = Sb, R = C6H11, n = 1, X = S; R = 4-FC6H4, n = 0, X = O, S, NCH3; R = 2,4,6-(CH3)3C6H2, n = 0, X = O, S, NH) wurden durch Reaktionen von R3Sb(OH)2 (R = CH3, C6H11, 2,4,6-(CH3)3C6H2), R3SbO (R = C6H5, 4-CH3OC6H4, 4-FC6H4) bzw. R3BiCO3 mit den entsprechenden fünfgliedrigen heterocyclischen Carbonsäuren 2-C4H3X(CH2)nCOOH dargestellt. Auf der Basis schwingungsspektroskopischer Daten wird für alle Verbindungen eine trigonal bipyramidale Umgebung vom M (zwei O-Atome von einzähnigen Carboxylatliganden in den apikalen, drei C-Atome von R in den äquatorialen Positionen) vorgeschlagen, ferner eine schwache Wechselwirkung zwischen O(=C) jeder Carboxylatgruppe und M. Die Kristallstrukturbestimmung von (C6H5)3Sb(O2C–2-C4H3S)3 stützt diesen Vorschlag. Die Verbindung kristallisiert triklin [Raumgruppe P$1; a = 891,8(14), b = 1058,2(12), c = 1435,6(9) pm, α = 68,53(8), β = 85,47(9), γ = 85,99(11)°; Z = 2; d(ber.) = 1,607 Mg m–3; V(Zelle) = 1255,6 Å3; Strukturbestimmung anhand von 3947 unabhängigen Reflexen (Fo > 3σ(F2o)), R(ungewichtet) = 0,037]. Sb bindet drei C6H5-Gruppen in der äquatorialen Ebene [mittlerer Abstand Sb–C: 211,1(5)pm] und zwei einzähnige Carboxylatliganden in den apikalen Positionen einer verzerrten trigonalen Bipyramide [mittlerer Abstand Sb–O: 212,0(4) pm]. Aus den relativ kurzen Sb – O(=C)-Abständen [274,4(4) und 294,9(4) pm] und aus der Aufweitung des dem O(=C)-Atom nächsten äquatorialen C–Sb–C-Winkels auf 145,9(2)° [andere C-Sb-C-Winkel: 104,4(2), 109,5(2)°] wird auf schwache Sb–O(=C)-Koordination geschlossen. Schließlich wird eine Korrelation zwischen dem (+, –)I-Effekt des Organoliganden R an M (M = Sb, Bi) und der Stärke der M–O(=C)-Koordination in den Dicarboxylaten R3M[O2C(CH2)n–2-C4H3X]2 vorgeschlagen. Triorganoanümony and Triorganobismuth Derivatives of Carbonic Acids of Five-membered Heterocycles. Crystal and Molecular Structure of (C6H5)3Sb(O2C–2-C4H3S)2 Triorganoantimony- and triorganobismuth dicarboxylates R3M[O2C(CH2)n–2-C4H3X]2 (M = Sb, R = CH3, C6H11, C6H5, 4-CH3OC6H4; M = Bi, R = C6H5, 4-CH3C6H4; n = 0, X = O, S, NH, NCH3. M = Sb, R = CH3, C6H5; M = Bi, R = C6H5; n = 1, X = O, S. M = Sb, R = C6H11, n = 1, X = S; R = 4-FC6H4, n = 0, X = O, S, NCH3; R = 2,4,6-(CH3)3C6H2, n = 0, X = O, S, NH) have been prepared by reaction of R3Sb(OH)2 (R = CH3, C6H11; 2,4,6-(CH3)3C6H2), R3SbO (R = C6H5, 4-CH3OC6H4, 4-FC6H4) or R3BiCO3 with the appropriate five-membered heterocyclic carboxylic acid. From vibrational data for all compounds a trigonal bipyramidal environment around M (two O atoms of unidendate carboxylate ligands in apical, three C atoms (of R) in equatorial positions) is proposed and also an additional weak interaction of O(=C) of each carboxylate group and M. The crystal structure determination of Ph3Sb(O2C–2-C4H3S)2 gives additional prove to this proposal. It crystallizes triclinic [space group P$1; a = 891.8(14), b = 1058.2(12), c = 1435.6(9) pm, α = 68.53(8), β = 85.47(9), γ = 85.99(11)°; Z = 2; d(calc.) = 1.607 Mg m–3; Vcell = 1255.6 Å3; structure determination from 3 947 independent reflexions (Fo > 3σ(F2o)), R(unweighted) = 0.037]. Sb is bonding to three C6H5 groups in the equatorial plane [mean distance Sb–C: 211.1(5) pm] and two unidentate carboxylate ligands in the apical positions of a distorted trigonal bipyramid [mean distance Sb–O: 212.0(4) pm]. From the relatively short Sb–O(=C) distances [274.4(4) and 294.9(4) pm] and from the enlarged value of the equatorial C–Sb–C angle next to the O(=C) atom [145.9(2)°; other C–Sb–C angles: 104.4(2), 109.5(2)°] additional weak Sb–O(=C) coordination is inferred. Finally a correlation between the (+, –) I-effect of the organic ligands It at M and the strength of the M–O = C interaction is suggested.  相似文献   

3.
Crystal and Molecular Structure of 2(C6H5)3AsO · H2SeO3 2(C6H5)3AsO · H2SeO3 crystallizes in the orthorhombic space group Fdd2—C2v19, with a = 20.472(9), b = 32.747(1) and c = 10.008(8) Å and Z = 8; d (calc./obs.) = 1.527/1.52 g · cm?3. The structure has been determined from 808 independent reflections by Patterson- and Fouriersyntheses, and has been refined by least squares methods to R = 0.056. In the compound two (C6H5)3AsO-units and one selenite group are linked by short H-bonds [O …? H …? O-distance 2.48(4) resp. 2.35(4) Å]. The As? O-distances are 1.64(9), the Se? O-distances are 1.69(3), 1.83(3), resp. 1.76(3) Å.  相似文献   

4.
On Phosphazo Compounds from Nitriles. IV. The Reaction of Tri, Di, and Monochloroacetonitrile with [Cl3P?N? PCl3]Cl. Improved Preparation of [Cl3P?N? PCl3]Cl Trichloroacetonitrile reacts with P2NCl7 to give Cl3C? CCl2? N?PCl2? N?PCl3 I , dichloroacetonitrile to give Cl2C?CCl? N?PCl2? N?PCl3 II , and chloroacetonitrile to give the ring compound III . Preparation, n.m.r. and mass spectra of the new compounds are described. The mechanism of formation is discussed. An improved procedure for the preparation of P2NCl7 is given.  相似文献   

5.
Preparation, Crystal and Molecular Structure of 2 (C6H5)3PO · (COOH)2 2(C6H5)3PO · (COOH)2 crystallizes from a solution of oxalic acid and (C6H5)3PO in methanol. Crystal data: space group P21/c (monoclinic) with a = 907.4(2), b = 1035.4(3), c = 1797.9(8) pm, β = 75.20(1)° and Z = 2; d (calc./obs.) = 1.27/1.31 g cm?;3; Vcell = 1633.1 × 106 pm3. The structure was determined by direct methods from 3006 independent reflections and has been refined by full matrix least squares to R = 0.049. In the compound one molecule of trans-oxalic acid and two symmetrically dependent (C6H5)3PO units are linked by short O…?H–O bridges distances and angles see above.  相似文献   

6.
Preparation, Crystal and Molecular Structure of Triphenylphosphineoxide Hydrogen - fluoride (C6H5)3PO · HF (C6H5)3PO · HF was prepared from hydrofluoric acid (40%) and (C6H5)3PO in benzene. It crystallizes in the monoclinic space group P21/c with a = 1 032.8(3), b = 1 051.0(7), c = 1695.5(2) pm, β = 121.95(2)° and Z = 4; d (calc./obs.) 1.27/1.26 g ° cm?3. The structure was determined by direct methods from 2 709 independent reflections and has been refined by full matrix least squares methods to R = 0.049. In the compound HF and (C6H5)3PO are linked by a short H-bond. Some distances: O? F 238.4(5), O? H 142.3, H? F 99.8, P? O 149.5(4) pm. Angle O? H? F 159.8°.  相似文献   

7.
Crystal and Molecular Structures of (Me2SiNCN)4 (1) and Me3SiNCNSiMe3 (2) Synthesis, spectroscopic characterization (NMR, IR, Raman and MS) and crystal structure of the novel compound 1 are described. The molecules form almost planar 16 membered rings with four SiMe2-groups connected to four NCN groups. The corresponding compound 2 exhibits a phase transition from the HT phase 2a to the LT phase 2b at 131 K. Consecutive X-ray structure determinations of the molecular structures of both modifications were performed on a crystal, grown in situ on the diffractometer at 231 K.  相似文献   

8.
Neutral Thiolates and a Iodothiolate of Antimony(III). Crystal Structures of Sb(SC6H5)3, Sb(SC6H2Me3-2,4,6)3, and SbI(SC6H2Me3-2,4,6)2 The crystal structures of Sb(SC6H5)3 ( 1 ), Sb(SC6 · H2Me3-2,4,6)3 ( 2 ), and the novel compound SbI(SC6H2Me3-2,4,6)2 ( 3 ) have been determined by X-ray crystallography. In addition to the expected trigonal pyramidal coordination of antimony intermolecular interactions are observed for 1 (Sb … O: 363.3 pm) and 3 (Sb … S: 2 × 369.4 pm) but not for 2 . The reasons for these differences are discussed.  相似文献   

9.
Synthesis and Crystal Structures of Bismuth Chalcogenolato Compounds Bi(SC6H5)3, Bi(SeC6H5)3, and Bi(S‐4‐CH3C6H4)3 Bismuth(III) acetate reacts with thiophenol in ethyl alcohol at 80 °C to yield Bi(SC6H5)3 ( 1 ). Slow cool down of the deep yellow mixture lead to the formation of orange crystals of 1 . The homotype phenylselenolato compound of bismuth Bi(SeC6H5)3 ( 2 ) has been prepared by the reaction of BiX3 (X = Cl, Br) with Se(C6H5)SiMe3 in diethyl ether. In the same way as Bi(SC6H5)3 ( 1 ) the reaction between bismuth(III) acetate and 4‐tolulenethiole results in red crystals of Bi(S‐4‐CH3C6H4)3 ( 3 ). In consideration of three longer Bi–E distances (intermolecular interactions, E = S; Se) the Bi(EPh)3 molecules form via face‐linked octahedra 1‐dimensional chains in the crystal lattice, while for 3 the 1‐dimensional chain is formed by face‐linked trigonal prisma. We reported herein the synthesis and structures of Bi(SC6H5)3 ( 1 ), Bi(SeC6H5)3 ( 2 ), and Bi(S‐4‐CH3C6H4)3 ( 3 ).  相似文献   

10.
Crystal- and Molecular Structures of Chlorotrispyridinium-bis-(tetrachloroaluminate(III)) and a New Modification of Pyridinium Chloride The compounds PyHCl and ((PyH)3Cl)(AlCl4)2 are formed by hydrolysis during the synthesis of adducts in the system AlCl3/pyridine. The second room temperature modification of PyHCl crystallizes in the space group P21/c with the lattice constants a = 847.9(3), b = 1770.2(3), c = 801.9(3) pm, β = 95.23(3)°, Z = 8. The atomic parameters were refined from 4471 measured intensities to R(F) = 6,9%. The N? Cl distances are 306.8(7) and 311.0(8) pm. The unit cell of ((PyH)3Cl)(AlCl4)2 is orthorhombic (space group Pbca) and has the lattice constants a = 1306.3(4), b = 1589.4(4), c = 2708.6(7) pm, Z = 8. The crystal structure was refined from 7226 measured intensities to R(F) = 6.7%. The cation shows three pyridinium ions to have NH…?Cl hydrogen bonds to a central positioned chloride ion with N? Cl distances of 301.4(7), 305(1) and 306(1) pm.  相似文献   

11.
The structure of (S4N3)2SbCI5 has been determined by X-ray methods using least-squares′ refinement. The compound crystallises monoclinic; C–P21/c, a = 9.24 Å, b = 17.77 Å, c = 11.29 Å, β = 110.06°, Z = 4. The antimony atom has a fivefold coordination the geometry being derived from a deformed octahedron, the S4N-rings retained their planar shape.  相似文献   

12.
Crystal and Molecular Structure of CuBr · (C2H5)4P2 (Monoclinic Form) The crystal structure of the copper(I) complex CuBr · (C2H5)4P2 has been determined by X-ray structure analysis. The substance crystallizes monoclinic, space group C–P21/n with a = 10.78, b = 15.74, c = 7.54 Å, β = 84.6° and 4 formula units in the unit cell. The structure was solved by conventional heavy atom methods and has been refined to a final R-value of 0.14. The structure is characterized by continous chains, the copper atoms are tetrahedrally coordinated and linked together by alternating double bridges of two bromine atoms and two biphosphine molecues, respectively.  相似文献   

13.
Contributions to the Chemistry of Sulfur. 114. Crystal and Molecular Structures of Hexathiepane (S6CH2), Pentathiane (S5CH2), and Dibenzylpentathiane (S5C (CH2C6H5)2) The crystal and molecular structures of hexathiepane 1 , pentathiane 2 and dibenzylpentathiane 3 were determined by single crystal X-ray structure analyses. 1 : Monoclinic space group P21/c; a = 7.694(4), b = 7.668(4), c = 12.367(6) Å, β = 108.9(1)°; Z = 4, dcalc. = 1.986 g/cm3. The seven-membered heterocycle exists in twist-conformation. 2 : Monoclinic space group C2/c; a = 10.990(5), b = 6.872(4), c = 15.507(6) Å, β = 94.1(1)°; Z = 8, dcalc. = 1.982 g/cm3. The six-membered heterocycle exists in chair-conformation. 3 : Monoclinic space group P21/c; a = 12.907(8), b = 13.611(8), c = 9.408(6) Å, β = 98.9(1)°; Z = 4, dcalc. = 1.442 g/cm3. 3 is analogous to 2 a six-membered heterocycle with chair-conformation. The benzylic groups are distorted to each other. Bond lengths, bond angles, and dihedral angles of the heterocyclic sulfur rings arc discussed, especially with regard to a comparison with cyclohexasulfur, cycloheptasulfur. and cyclooctasulfur.  相似文献   

14.
15.
Crystal and Molecular Structure of (CH3)2SnSAB. (SAB = Dianion of 2-Hydroxy-N-(2-hydroxybenzylidene)-aniline) (CH3)2SnSAB, C15H15NO2Sn (SAB = tridentate dianion of 2-hydroxy-N-(2-hydroxybenzylidene)-aniline in SCHIFF base form) crystallizes in the space group Pben (D) with a = 19.271(5), b = 10.508(2), c = 13.379(1) Å and Z = 8. The structure has been solved using 1307 symmetrical independent reflections and applying the heavy atom method; the position of all atoms, except the H atoms, has been determined. As interatomic distances have been found: Sn? C: 2.117(14), Sn? O:2.112(9), Sn? N:2.229(11) N? C 10 (phenyl group II): 1.462(16), C9-N (SCHIFF base bridging group): 1.257(18), C 9? C8 (phenyl group I): 1.441(18) Å; mean C? C distances in the phenyl groups: 1.403(18) Å. Two molecules at a time have a centre of symmetry and weakly coordinate through two loose Sn? O bridges (intermolecular Sn? O distance: 2.881(8) Å). The individual molecules essentially form a distorted trigonal bipyramid with N and both methyl-C atoms in the equatorial plane; ? CSnC = 138.52(50)°; ? OSnO = 158.58(35)°.  相似文献   

16.
采用1HNMR谱研究了通式为〔M3ⅢO(OOCR)6L3〕+(M=Cr,Fe,Mn;R=CH3,C2H5,CH2NH2;L=C5H5N,H2O)的一系列氧心三核过渡金属配合物,主要考察其1H化学位移随金属、配体、温度、溶剂等因素变化而变化的规律。结果表明,骨架金属对化学位移的影响最大,M3O中的3个金属离子间存在反铁磁交换相互作用。对Mn配合物中顺磁中心对化学位移和线宽的影响机制的研究表明,其1H各向同性位移主要由接触作用贡献  相似文献   

17.
Synthesis and Crystal Structure of meso-(1,2,3-Tricyclohexyltriphosphane-1,3-diyl)zirconocene(IV), Cp2 (Cp = η5?C5H5, Cy = C6H11) Cp2ZrCl2 reacts with Li(THF)2PHCy (Cy = C6H11) to yield the metallacyclic compound Cp2 1. , The 31P{1H} NMR spectrum of 1 , shows a coupling pattern for an A2X system, indicating the presence of only the meso-forms in solution, which are also present in the solid state. 1 , crystallizes in the monoclinic space group P21/n (No. 14) with a = 12.984(8), b = 9.241(7), c = 23.05(1) Å, β = 93.48(4)°, V = 2760.1 Å3 and four formula units in the unit cell (2718 independent observed reflections, R = 7.3%). The central ZrP3 ring in 1 , is almost planar. The Zr? P bond lengths of 2.618(4) and 2.628(4) Å are nearly identical.  相似文献   

18.
The Reactions of CH2=P(NMe2)3 with Fe(CO)5, Cr(CO)6, and CS2; Molecular Structures of [MeP(NMe2)3][(CO)5CrC(O)CH=P(NMe2)3], and (CO)4Fe=C(OMe)CH=P(NMe2)3 The ylide CH2=P(NMe2)3 ( 1 ) reacts with several binary transition metal carbonyls M(CO)x to produce the corresponding salt like compounds [MeP(NMe2)3][(CO)x–1MC(O)CH=P(NMe2)3] (M = Fe ( 3 ), Cr ( 4 )). The related reaction with CS2 leads to the salt [MeP(NMe2)3][SC(S)CH=P(NMe2)3] ( 2 ). While 4 is thermally stable, 3 rapidly decomposes at room temperature with formation of [MeP(NMe2)3]2[Fe2(CO)8] ( 8 ). Alkylation of 3 (at –50 °C) and 4 with MeSO3CF3 produces the related carbene complexes (CO)x–1M=C(OMe)CH=P(NMe2)3 ( 5 ) and ( 6 ); the reaction of 3 with Me3SiCl results in the formation of the carbene complex (CO)4Fe=C(OSiMe3)CH=P(NMe2)3 ( 7 ). 4 crystallizes in the space group P212121 (No. 19) with a = 1111.1(2), b = 1476.1(3), c = 1823.1(4) pm and Z = 4. 5 crystallizes in the space group P21/n (No. 14) with a = 1303.6(3), b = 910.5(4), c = 1627.0(4) pm, β = 96.06(2)° and Z = 4. The compounds have been characterized by elemental analyses, NMR (1H, 13C, 31P) and IR spectroscopy.  相似文献   

19.
Contributions to the Chemistry of Phosphorus. 66. Crystal and Molecular Structure of 1,2,3,4-Tetraphenyl-cyclo-5-carba-1,2,3,4-tetraphosphane, (PC6H5)4CH2, and 1,4-Dithio-1,2,3,4-tetraphenyl-cyclo-5-carba-1,2,3,4-tetraphosphane, (PC6H5)4CH2S2 The following results were achieved by X-ray structure analyses of 1,2,3,4-Tetraphenyl-cyclo-5-carba-1,2,3,4-tetraphosphane 1 and 1,4-Dithio-1,2,3,4-tetraphenyl-cyclo-5-carba-1,2,3,4-tetraphosphane 2 :
  • crystallises in the monoclinic space group Cc with a = 22.272, b = 13.726, c = 7.492 Å, β = 96.82° and Z = 4. The P4C-ring has an envelope conformation. The phenyl groups are arranged alternately on both sides of the ring.
  • forms triclinic crystals, space group P1 , with a = 10.900, b = 10.663, c = 12.233 Å, α = 106.26, β = 100.04, γ = 70.65°, Z = 2. The P4C-ring has twist conformation, the carbon atom lies almost in the mean plane of the ring. The sulfur atoms are bonded in exo position to the phosphorus atoms neighbouring the carbon atom and in trans position to each other.
  相似文献   

20.
Synthesis, Properties, and Molecular Structures of Alkylaluminium Aminoalkoxide Chlorides Alkylaluminium aminoalkoxide chlorides [R(Cl)AlOR*] 1 – 3 have been obtained from the reaction of dialkyl aluminium chlorides R2AlCl with the respective aminoalkohol HOR* ( 1 : R = Et, OR* = dimethylamino‐1‐propanol; 2 : R = Me, OR* = (+);(–)‐dimethylamino‐2‐propanol; 3 : R = Me, OR* = (S)‐N‐methyl‐2‐pyrrolidinyl‐methanol). The reaction between dimethylaluminium chloride and (S)‐α, α‐diphenyl‐2‐pyrrolidinyl‐methanol (OR* = Dpm) yielded, by contrast, the ionic {[MeAl(OR*)2AlMe2]+ [MeAlCl3]} complex ( 4 ). 1 – 4 have been characterised by 1H, 13C and 27Al‐NMR spectroscopy. Crystal structures of 1 and of the 1 : 1 solvate of 4 with Et2O have been determined by X‐ray methods and the absolute structure of 4 was confirmed by refinement of the Flack‐parameter. The dimeric molecules of 1 are composed of two chelating rings linked via an almost planar Al2O2 unit and pentacoordination is observed about aluminium. In contrast, each of the two crystallographically independent cation molecules of 4 contains one four‐ and and one five‐coordinate metal centre.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号