首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On Hexafluoroferrates(III): Cs2TlFeF6, Cs2KFeF6, Rb2KFeF6, Rb2NaFeF6, and Cs2NaFeF6 New prepared are the compounds Cs2TlFeF6 (a = 9.211 Å), Cs2KFeF6 (a = 9.041 Å), Rb2KFeF6 (a = 8.868 Å) and Rb2NaFeF6 (a = 8.46 4Å) all cubic Elpasolithes as well as Cs2NaFeF6 (Cs2NaCrF6?type, hexagonal with a = 6.281, c = 30.532 Å), all colourless. Cs2KFeF6 was measured magnetically (70–297,2 K). The spectra of reflection were measured (9000–36000 cm?1). The Madelung Part of Lattice Energy, MAPLE, is calculated and discussed.  相似文献   

2.
X-Ray Structural Studies of the Polymorphic Elpasolites K2LiAlF6 and Rb2LiGaF6 At single crystals of low (LT) and high temperature (HT) modifications of K2LiAlF6 and of Rb2LiGaF6, synthesized at normal pressure (NP), the crystal structures were refined. LT-K2LiAlF6 is a cubic elpasolite (Fm3m, Z = 4, a = 784.2(1) pm; Al–F: 181.2(1) pm), HT-K2LiAlF6 and NP-Rb2LiGaF6 are isostructural with the hexagonal-rhombohedral type of Cs2NaCrF6 (R3m, Z = 6, a = 561.7(1) resp. 586.3(1), c = 2757.6(6) resp. 2856.3(5) pm; mean values Al–F: 180.5 resp. Ga–F: 189.3 pm). A cubic high pressure modification (HP) of Rb2LiGaF6 was obtainable as a powder only (a = 820.8(2) pm). The relations of distances between LT/HT and HP/NP polymorphs of elpasolites are compared and discussed.  相似文献   

3.
The results of complete X-ray single-crystal structure determinations of the isostructural compounds Cs2NaCrF6 and Cs2NaFeF6, crystallizing in a 12 L-structure in space group R3m, as well as of 2 L-Cs2LiGaF6 (space group P3m1), are reported. The structures, which contain face sharing octahedra, are discussed in comparison to the hexagonal fluoroperovskites. The mean distances observed, CrF = 1.910 Å, FeF = 1.926 Å, GaF = 1.93 Å, are compared to recently published data.  相似文献   

4.
Single Crystal Structural Studies at Hexagonal Fluoride Perovskites AMIIF3 (MII = Mg, Mn, Fe, Co, Ni) At single crystals of nine fluoride phases AMF3 the hexagonal perovskite structures were refined by X‐ray methods, of RbNiF3 below TC £ 145 K, too. The hexagonal 6 L type (P63/mmc, Z = 6) is found at: RbMgF3 (a = 585.7(1); c = 1426.0(1) pm), CsMnF3 (624.4(1); 1515.4(4) pm), CsFeF3 (616.8(1); 1488.4(6) pm), Rb0.63Cs0.37CoF3 (599.1(1); 1460.3(4) pm), RbNiF3 (128 K: 582.6(1); 1426.4(6) pm), Cs2BaLiNi2F9 (593.1(1); 1447.1(4) pm). Of the hexagonal‐rhombohedral 9 L type (R 3 m, Z = 9) are CsCoF3 (620.1(1); 2264.0(7) pm) and yellow CsNiF3 (614.7(1); 2235.3(6) pm), prepared at lower temperatures resp. under high pressure, whereas light green CsNiF3 (625.5(1); 524.2(1) pm) belongs to the 2 L type (P63/mmc, Z = 2). The occurence of these structures and the interatomic distances observed, comparing also normal and high pressure phases, are discussed in connection with the tolerance factor.  相似文献   

5.
A New Oxouranate(VI): K2Li4[UO6]. With a Remark about Rb2Li4[UO6] and Cs2Li4[UO6] For the first time K2Li4UO6 has been prepared by an exchange reaction of α-Li6UO6 with K2O [K:U = 2.0:1, sealed au-tube; 750°C; 30 d single crystals; 680°C, 10 d powder]. The irregular shaped single crystals, which are of yellow color and sensitive to moisture crystallize in P3 m1 (Z = 1) with a = 619.27(5), c = 533.76(6) pm. The structure determination (PW 1100, AgKα R = 4.80%, Rw = 4.81% for 220 unique reflexions) reveals a new type of structure. The characteristic elements are the isolated group [UO6] and the C.N. = 12 for K+. While Li(1) has a nearly regular square of 4 O2? as coordination polyhedron, Li(2) is octahedrally surrounded. The Madelung Part of Lattice Energy (MAPLE) is calculated and discussed. In addition to K2Li4[UO6] the new oxides Rb2Li4[UO6] and Cs2Li4[UO6] are prepared as pale yellow powders which are little sensitive to moisture (both: au-tube, 680°C, 10 d). According to powder datas both compounds are isotypic with K2Li4[UO6] [Rb2Li4[UO6]: a = 622.91(5), c = 535.93(6) pm; Cs2Li4[UO6]: a = 626.70(6), c = 539.92(6) pm].  相似文献   

6.
New Alkalioxoarsenates (V). On Rb2Li[AsO4] and Cs2Li[AsO4] By heating of well-grounded mixtures of the binary oxides (A2O, Li2O2, and As2O3; A : Li : As = 2 : 1 : 1; Ni-tube, 550°C, 21 d; A = Rb, Cs) colourless single crystals of Rb2Li[AsO4] and Cs2Li[AsO4] were obtained for the first time. These new orthoarsenates(V) crystalize orthorhombic (space group C mc21? C, No. 36) with Z = 4. As expected they are isotypic with the according orthovanadates(V) [2] A2Li[VO4], A = Rb, Cs. The lattice constants of Rb2Li[AsO4]: a = 582.1(4) pm, b = 1171.1(7) pm, c = 792.4(5) pm and Cs2Li[AsO4]: a = 596.4(2) pm, b = 1223.4(2) pm, c = 819.7(3) pm were taken from Guinier-Simon powder data. The structure was determined by four-circle-diffractometer data [Siemens AED II, MoKα , 6290 I0 (hkl), R = 3.5%, Rw = 3.2% to Rb2Li[AsO4]; 3518 I0 (hkl), R = 2.8%, Rw = 2.6% to Cs2Li[AsO4]; parameters see text]. The Madelung Part of Lattice Energy, MAPLE, and Effective Coordination Numbers, ECoN, these calculated via Mean Fictive Ionic Radii, MEFIR, as well as charge distribution CHARDI are calculated and discussed.  相似文献   

7.
A New Lead Strontium Ferrate(III): The Crystal Structure of the Phase Pb4Sr2Fe6O15 At orthorhombic single crystals of Pb4Sr2Fe6O15 (a = 568.73(8), b = 392.03(4), c = 2107.5(3) pm; Z = 4/3, space group Pnma) a X-ray structure determination has been performed (R1 = 0,036 for 488 ?observed”? resp. wR2 = 0,073 for all 643 independent reflexions). It revealed a framework of polyhedra related to perovskite, in which chains of edgesharing pyramids [FeO5] (average Fe1? O: 197 pm; Fe1? Fe1: 305.5 pm) are linked via apices with corner-sharing [FeO6] octahedra (Fe2? O: 201 pm). 12–fold, strongly distorted cuboctahedrally coordinated ?perovskite positions”? show mixed occupancy by 2/3 Sr + 1/3 Pb (= Sr2; Sr2? O: 287 pm). More spacy channels, running parallel to the chains of pyramids along [010] of the structure, contain lead atoms only. The double occupancy of the corresponding cages results in short distances Pb1? Pb1 (355.9 pm) and Pb1? Fe2 (314.4 pm), as well as in a very asymmetric [PbO6] coordination (Pb1? O: 253 pm), in the opposite hemisphere of which the lone electron pair s2 is supposed to be located. Details are communicated and structural relations discussed.  相似文献   

8.
New Metal Oxides with Doubles of Tetrahedra as Building Units: Rb6[Tl2O6] and Cs6[In2O6] We prepared the hitherto unknown Rb6[Tl2O6] and Cs6[In2O6] by heating mixtures of Tl2O3 and RbO0.60 (Rb:Tl = 3.5:1) as well as In2O3 and CsO0.53 (Cs:In = 3.5:1) as single crystals [closed Ag-cylinder, 650°C, 14 d]. The single crystals of Rb6[Tl2O6] are yellow, those of Cs6[In2O6] pale yellow, all transparent and rude. The new type of structure was elucidated by 4-circle-diffractometer (PW 1100) data. Rb6[Tl2O6]: P21/a; a = 1145,7(3), b = 713,3(1), c = 783,9(2) pm, β = 93,73° (2), Z = 2; Ag–Kα, 2100 out of 2531 I0(hkl), R = 9,6% and Rw = 8,9%. Cs6[In2O6]: P21/a; a = 1178,5(4), b = 730,7(2), c = 816,3(2) pm, β = 95,38° (3), Z = 2; Mo–Kα, 1584 out of 2032 I0(hkl), R = 9,25%, and Rw = 8,44%. The Madelung Part of Lattice Energy, MAPLE, is calculated and discussed.  相似文献   

9.
Structures of Caesium-containing Fluorides. VII. Cs6Ni5F16 – a New Compound in the System CsF/NiF2 and its Crystal Structure Single crystals of a more caesium-containing phase of composition Cs6Ni5F16, forming in the course of solid state CsNiF3 preparation, could be isolated and their structure determined: a = 618.4(1), b = 1. 455.5(2), c = 2145.1(2) pm, space group Cmca, Z = 4, R = 0.030 (1936 independent reflections). The structure contains chains of five face-sharing octahedra, which are connected at their ends via corners to form a zig-zag layer. The Ni? Ni distances within the chains are 264.1 and 270.2 pm, the average Ni? F distance is 202.0 pm. The caesium atoms exhibit 10-, 11-, and 12-coordination. The structural relations to 2L? CsNiF3 and Cs4Ni3F10 are discussed.  相似文献   

10.
Carbonate Hydrates of the Heavy Alkali Metals: Preparation and Structure of Rb2CO3 · 1.5 H2O und Cs2CO3 · 3 H2O Rb2CO3 · 1.5 H2O and Cs2CO3 · 3 H2O were prepared from aqueous solution and by means of the reaction of dialkylcarbonates with RbOH and CsOH resp. in hydrous alcoholes. Based on four‐circle diffractometer data, the crystal structures were determined (Rb2CO3 · 1.5 H2O: C2/c (no. 15), Z = 8, a = 1237.7(2) pm, b = 1385.94(7) pm, c = 747.7(4) pm, β = 120.133(8)°, VEZ = 1109.3(6) · 106 pm3; Cs2CO3 · 3 H2O: P2/c (no. 13), Z = 2, a = 654.5(2) pm, b = 679.06(6) pm, c = 886.4(2) pm, β = 90.708(14)°, VEZ = 393.9(2) · 106 pm3). Rb2CO3 · 1.5 H2O is isostructural with K2CO3 · 1.5 H2O. In case of Cs2CO3 · 3 H2O no comparable structure is known. Both structures show [(CO32–)(H2O)]‐chains, being connected via additional H2O forming columns (Rb2CO3 · 1.5 H2O) and layers (Cs2CO3 · 3 H2O), respectively.  相似文献   

11.
Ternary Halides of the A3MX6 Type I. A3YCI6 (A = K, NH4, Rb, Cs): Synthesis, Structures, Thermal Behaviour. Some Analogous Chlorides of the Lanthanides Reaction of the trichlorides MCl3 (M = Y, Tb? Lu) with alkali chlorides AC1 (A = K, Rb, Cs) in evacuated silica ampoules at 850?900°C yields A3MCl6-type chlorides. (NH4)3YCl6 is obtained via the ammonium-chloride route. The crystal structure of Rb3YCl6 (monoclinic, C2/c (no. 15), Z = 8, a = 2583(1)pm, b = 788.9(4)pm, c = 1283.9(7)pm, p = 99.63(4)°, R = 0.062, Rw = 0.050) is that of Cs3BiCl6. The Rb3YCl6/Cs3BiCl6 structure and the closely related structures of K3MoCl6 and In2CI3 are derived from the elpasolite-type of structure (K2NaAlF6) making use of the model of closest-packed layer structures. Cell parameters for the chlorides Rb3MCl6 (M = Y, Tb? Lu) and Cs3YCl6 and Cs3ErCl6 as well, which are all isostructural with Rb3YCl6, are given. The “system” (K, NH4, Rb, Cs)YCl6 has been investigated by DTA and high-temperature X-ray powder diffractometry.  相似文献   

12.
On ?Lithovanadates”?: Rb2[LiVO4] and Cs2[LiVO4] By heating of well ground mixtures of the binary oxides [A2O, Li2O, V2O5, A : Li: V = 2.2 : 1.1 : 1.0 (A = Rb, Cs); Ni-tube, 750° 25 d] we obtained Rb2[LiVO4] and Cs2[LiVO4] colourless, orthorhombic single crystals. We found a new type of ?Lithovanadate”?-structure: space group Cmc21; a = 587.9(1), b = 1170.1(1), c = 793.3(1) pm, Z = 4 (A = Rb) bzw. a = 610.5(1), b = 1222.6(3), c = 815.5(2) pm, Z = 4 (A = Cs). The structure was determined by four-circle diffractometer data [MoKα -radiation; 997 from 1157 I0(hkl), R = 7.75%, Rw = 5.54% (A = Rb); 686 from 686 I0(hkl), R = 6.97%, Rw = 4.20% (A = Cs)] parameters see text. The Madelung part of Lattice Energy, MAPLE, and Effective Coordination Numbers, ECoN, these via Mean Fictive Ionic Radii, MEFIR, have been calculated.  相似文献   

13.
Polymorphism of Cs2NaMnF6. Crystal Structures of the High Pressure and the High Temperature Phase Cs2NaMnF6 has been prepared in three polymorphous forms and investigated by X-ray diffraction. Under high pressure (> 5 kbar) a cubic α-phase was formed with elpasolite structure (space group Fm3m, a = 876.2 pm, Z ? 4, R ? 0.045 for 12 powder reflections). By quenching from 700°C a high temperature γ-form could be trapped with 12L-Cs2NaCrF6 structure (space group R¯3m, Z = 6, Rw ? 0.041 for 419 independent single crystal reflections). The “normal” β-phase is a low symmetric variant of this 12L-type. The influence of the Jahn-Teller effect on the structures and the polymorphism is discussed.  相似文献   

14.
The Crystal Structures of the Vanadium Weberites Na2MIIVIIIF7 (MII ? Mn, Ni, Cu) and of NaVF4 At single crystals of the vanadium(III) compounds NaVF4 (a = 790.1, b = 531.7, c = 754.0 pm, β = 101.7°; P21/c, Z = 4), Na2NiVF7 (a = 726.0, b = 1031.9, c = 744.6 pm; Imma, Z = 4) and Na2CuVF7 (a = 717.6, b = 1043.5, c = 754.6 pm; Pmnb, Z = 4) X-ray structure determinations were performed, at Na2MnVF7 (a = 746.7, c = 1821.6 pm; P3221, Z = 6) a new refinement. NaVF4 crystallizes in the layer structure type of NaNbO2F2. The fluorides Na2MIIVF7 represent new orthorhombic (MII ? Ni; Cu) resp. trigonal (MII ? Mn) weberites. The average distances within the [VF6] octahedra of the four compounds are in good agreement with each other and with data of related fluorides (V? F: 193.3 pm). The differences between mean bond lengths of terminal and bridging F ligands are 5% in NaVF4, but less than 1% in the weberites. Details and data for comparison are discussed.  相似文献   

15.
Cs2LiLuCl6 (form II, metastable at room temperature) and Cs2KScCl6 were obtained as single crystals from reaction of CsLu2Cl7: Li = 1:1 and Cs3Sc2Cl9: K = 1:2 in arc-welded tantalum tubes at 500°C. They crystallize with the cubic face-centered K2NaAlF6-type structure (elpasolite, Fm3m, Z = 4) with a = 1040.9 pm, x(Cl) = 0.2483(4) [Cs2LiLuCl6-II] and a = 1087.3(3) pm, x(Cl) = 0.2263(6) [Cs2KScCl6].  相似文献   

16.
Crystal Structure of the “Supramolecular” Complex [Cs2(18-crown-6)][HgI4] with Unusually Coordinated Cs Ions The reaction of 18-crown-6, 1,4,7,10,13,16-hexaoxacyclooctadecane, with HgI2/CsI in methanol yields crystals of [Cs2(C12H24O6)][HgI4]. The compound crystallizes monoclinically, space group P21/c, Z = 4, a = 1574.8(3), b = 1067.0(3), c = 1693.2(6) pm, and β = 98.29(3)º. The structure consists of a network made up of two different types of [Cs-(18-crown-6)-Cs]2+ cations, interconnected by [HgI4]2? anions. The cations form an “anti-sandwich” structure with relatively short Cs ? Cs distances of 382 pm in the first type of cations and a longer distance of 480 pm in the second type of cations.  相似文献   

17.
Structures of the l,3,5-Trisilacyclohexane-Iron Dicarbonyl-cyclopentadienyl Complexes and C3H6Si3Cl5Fe(CO)2πcp and C3H6Si3Cl4(Fe(CO2)πcp)2 Trisilapentachlorocyclo-hexyl-dicarbonylcyclopentadienyliron C3H6Si3Cl5Fe(CO)2πcp 1 and Trisilatetrachlorocyclohexyl-bis(dicarboncyclopentadienyliron)C3H6Si3Cl4(Fe(CO)2πcp)2 2 are 1,3,5-Trisilacyclohexane complexes substituted by dicarbonylcyclopentadienyliron at one and two silicon atoms of the six-membered ring, respectively. The crystal and molecular structures were determined from single crystals ( 1 ; space group P21/a (No. 14); a = 1100.5 pm; b = 2033.9 pm; c = 843.3pm; β = 98.58°; Z = 4; MoKα-radiation; 3142h k l; R = 0.036. 2 ; space group P1 ; (No. 2); a = 1231.1 pm; b = 1267.3 pm; c = 1045.9 pm; α = 113.23°; β = 83.93°; γ = 115.00°; Z = 2; Mokα-radiation; 4196 h k 1; R = 0.065). In both complexes the six-membered rings of the carbosilane ligands are in skew-boat conformation. The bond lengths Fe? Si are 226.4 pm and 228.1 pm, respectively. The distances Si? C and Si? Cl are 186 pm and 206 pm in 1 and 187 pm and 209 pm in 2 . Their different lengths depend on the position in the ligand system and can be explained with the concept of bond orders.  相似文献   

18.
Crystal Structures of Octacyanomolybdates(IV). III (NMe4)3Li[Mo(CN)8] · 3.5 H2O and Cs7Na[Mo(CN)8]2 · 4.17 H2O: Examples of Dodecahedral and Square Antiprismatic Eight-Coordination At single crystals of the hydrated tetragonal cyano complexes (NMe4)3Li[Mo(CN)8] · 3.5 H2O (a = 1707.5(3), c = 1054.9(2) pm, space group P421m, Z = 4) and Cs7Na[Mo(CN)8]2 · 4.17 H2O (a = 1547.9(1), c = 3254.6(6) pm, I41/a, Z = 8) X-ray structure determinations were performed. The [Mo(CN)8]4– polyhedra agree with respect to their mean distances Mo–C and C–N (216,7/114,3 pm resp. 216,1/114,7 pm) within their standard deviations, however, there is a distorted dodecahedron in the first case ((NMe4)3Li-complex), and a distorted square antiprism in the second (Cs7Na-complex). The coordination of the counter cations, partly hydrated, the formation of hydrogen bridges and the packing of the complex anions is discussed.  相似文献   

19.
The Crystal Structures of the Weberites Na2CuScF7 and Na2ZnAlF7 At single crystals of the orthorhombic weberites Na2CuScF7 (Pmnb, Z = 4) and Na2ZnAlF7 (Imma, Z = 4) X-ray structure determinations were performed. Na2CuScF7 (Na2ZnAlF7): a = 726.0 (709.2), b = 1053.4 (1009.2), c = 765.8 (733.7) pm; R1 = 0.030 (0.042) for 887 (363) observed and independent reflections. The resulting average distances of the octahedrally coordinated metal atoms are: Cu? F = 200.7 pm, Sc? F = 201.7 pm; Zn? F = 198.8 pm, Al? F = 180.1 pm. Some structural relations and the variation in the bridge angles of the corner-sharing octahedra are discussed.  相似文献   

20.
Structure and Magnetism of Fluorides Cs2MCu3F10 (M = Mg, Mn, Co, Ni), Variants of the CsCu2F5 Type X‐ray structure determinations of single crystals showed that compounds Cs2MCu3F10 crystallize with Z = 2 in space group P21/n (No.14) (M = Mn) of the CsCu2F5 type resp. in its supergroup I2/m (No.12) (M = Mg, Co, Ni). Cs2MgCu3F10: a = 714.9(1), b = 736.8(1), c = 940.4(1) pm, b = 96.29(1)°, (Mg‐F: 199.2 pm); Cs2MnCu3F10: a = 725.1(1), b = 742.7(1), c = 951.0(2) pm, b = 97.28(3)°, (Mn‐F: 209.1 pm); Cs2CoCu3F10: a = 717.8(3), b = 739.1(2), c = 939.4(4) pm, b = 97.49(2)°, (Co‐F: 203.1 pm); Cs2NiCu3F10: a = 716.3(1), b = 737.7(1), c = 938.2(2) pm, b = 97.09(1)°, (Ni‐F: 201.0 pm). As determined directly for the Mg compound and generally concluded from the average distances M‐F noted, M substitution concerns mainly the octahedrally coordinated position of the CsCu2F5 structure, the distortion of which is very much reduced thereby. Within the remaining [CuF4] and [CuF5] coordinations, in contrast to CsCu2F5, one F ligand is disordered, in case of the Mn compound the pyramidally coordinated Cu atom, too. The magnetic properties are complex and point to frustration and spin glass effects. Only at the diamagnetically substituted variants with M = Mg, Zn no Néel point appears, which is reached at 27, 23, 36 and 55 K for M = Mn, Co, Ni and Cu, resp. At lower temperatures ferri‐ resp. weak ferromagnetism and hysteresis is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号