首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
O? and OH? react with fatty acid methyl esters (FAMES) under chemical ionization conditions both as Bronsted bases to form [M - H]? and as nucleophiles to form the carboxylate ion RCOO?. O? shows a much greater tendency to react as a nucleophile than does OH?. The [M - H]? ions fragment by elimination of CH3OH, with unsaturation in certain positions in the fatty acid hydrocarbon chain promoting this elimination for unknown reasons. The reaction of O? and OH? with triacylglycerols leads to [M - H]?, characteristic of the molecular mass, and to carboxylate ions characteristic of the fatty acid(s) present in the lipid. The presence of the three ester functions in the lipids greatly enhances the formation of carboxylate ions compared to the FAMES.  相似文献   

2.
The O2–N2 and O2–Ar negative-ion chemical ionization mass spectra of aromatic amines show a series of unusual ions dominated by an addition appearing at [M + 14]. Other ions are observed at [M – 12], [M + 5], [M + 12], [M + 28] and [M + 30]. Ion formation was studied using a quadrupole instrument equipped with a conventional chemical ionization source and a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. These studies, which included the examination of ion chromatograms, measurement of positive-ion chemical ionization mass spectra, variation of ion source temperature and pressure and experiments with 18O2, indicate that the [M + 14] ion is formed by the electron-capture ionization of analytes altered by surfaceassisted reactions involving oxygen. This conversion is also observed under low-pressure conditions following source pretreatment with O2. Experiments with [15N]aniline, [2,3,4,5,6-2H5] aniline and [13C6]aniline show that the [M + 14] ion corresponds to [M + O ? 2H], resulting from conversion of the amino group to a nitroso group. Additional ions in the spectra of aromatic amines also result from surface-assisted oxidation reactions, including oxidation of the amino group to a nitro group, oxidation and cleavage of the aromatic ring and, at higher analyte concentrations, intermolecular oxidation reactions.  相似文献   

3.
Collision-induced decomposition/mass-analyzed ion kinetic energy or collisionally activated mass spectra of [M ? H]? ions of polyhydroxy compounds and other alcohols and ethers are reported. The [M ? H]? ion of each compound is produced under OH? negative ion chemical ionization mass spectrometric conditions. Characteristic fragmentations are observed that include production of [M ? H ? 2]?, [M ? H ? 18]? and [M ? H ? 32]? ions. Certain other fragment ions in the collisionally activated mass spectra make it possible to distinguish among structural isomers. In polyhydroxy compounds, fragmentation increases as the number of hydroxyl groups increase, and carbon-carbon bond cleavage becomes favored.  相似文献   

4.
Under Ammonia chemical Ionization conditions the source decompositions of [M + NH4]+ ions formed from epimeric tertiary steroid alchols 14 OHβ, 17OHα or 17 OHβ substituted at position 17 have been studied. They give rise to formation of [M + NH4? H2O]+ dentoed as [MHsH]+, [MsH? H2O]+, [MsH? NH3]+ and [MsH? NH3? H2O]+ ions. Stereochemical effects are observed in the ratios [MsH? H2O]+/[MsH? NH3]+. These effects are significant among metastable ions. In particular, only the [MsH]+ ions produced from trans-diol isomers lose a water molecule. The favoured loss of water can be accounted for by an SN2 mechanism in which the insertion of NH3 gives [MsH]+ with Walden inversion occurring during the ion-molecule reaction between [M + NH4]+ + NH3. The SN1 and SNi pathways have been rejected.  相似文献   

5.
The O?˙ chemical ionization mass spectrri of the C8H10 alkylbenzenes, o-, m-. andp -xylene and ethylbenzene, show formation of [M ? H + O]?, [M ? H]?, [M ? H2]?˙ and, for the xylenes, [M ? CH3 + O]? as primary reaction products; the relative importance of these products depends on the isomer. However, [OH]? is a primary product from reaction of O?˙ with both the C8H10 isomers and hydrogen-containing impurities; [OH]? reacts further with the alkylbenzenes to produce [M ? H]? with the result that the chemical ionization mass spectra depend on experimental conditions such as sample size and the presence of impurities. The collision-induced charge inversion mass spectra of the [M ? H + O]? and [M ? H]? products allow only distinction of ethylbenzene from the xylenes. However, the collision-induced charge inversion mass spectra of the [M ? H2]?˙ ions show differences which allow identification of each isomer.  相似文献   

6.
[M ? H+]? ions of isoxazole (la), 3-methylisoxazole (1b), 5-methylisoxazole (1c), 5-phenylisoxazole (1d) and benzoylacetonitrile (2a) are generated using NICI/OH? or NICI/NH2? techniques. Their fragmentation pathways are rationalized on the basis of collision-induced dissociation and mass-analysed ion kinetic energy spectra and by deuterium labelling studies. 5-Substituted isoxazoles 1c and 1d, after selective deprotonation at position 3, mainly undergo N ? O bond cleavage to the stable α-cyanoenolate NC ? CH ? CR ? O? (R = Me, Ph) that fragments by loss of R? CN, or R? H, or H2O. The same α-cyanoenolate anion (R = Ph) is obtained from 2a with OH?, or NH2?, confirming the structure assigned to the [M ? H+]? ion of 1d, On the contrary, 1b is deprotonated mainly at position 5 leading, via N? O and C(3)? C(4) bond cleavages, to H? C ≡ C? O ? and CH3CN. Isoxazole (1a) undergoes deprotonation at either position and subsequent fragmentations. Deuterium labelling revealed an extensive exchange between the hydrogen atoms in the ortho position of the phenyl group and the deuterium atom in the α-cyanenolate NC ? CD = CPh ? O?.  相似文献   

7.
The gas-phase ion chemistry of protonated O,O-diethyl O-aryl phosphorothionates was studied with tandem mass spectrometric and ab initio theoretical methods. Collision-activated dissociation (CAD) experiments were performed for the [M+H]+ ions on a triple quadrupole mass spectrometer. Various amounts of internal energy were deposited into the ions upon CAD by variation of the collision energy and collision gas pressure. In addition to isobutane, deuterated isobutane C4D10 also was used as reagent gas in chemical ionization. The daughter ions [M+H?C2H4]+ and [M+H?2C2H4]+ dominate the CAD spectra. These fragments arise via various pathways, each of which involves γ-proton migration. Formation of the terminal ions [M+H?2C2H4?H2O]+, [M+H?2C2H4?H2S]+, [ZPhOH2]+, [ZPhSH2]+, and [ZPhS]+ [Z = substituent(s) on the benzene ring] suggests that (1) the fragmenting [M+H]+ ions of O,O-diethyl O-aryl phosphorothionates have protons attached on the oxygen of an ethoxy group and on the oxygen of the phenoxy group; (2) thiono-thiolo rearrangement by aryl migration to sulfur occurs; (3) the fragmenting rear-ranged [M+H]+ ions have protons attached on the oxygen of an ethoxy group and on the sulfur of the thiophenoxy group. To get additional support for our interpretation of the mass spectrometric results, some characteristics of three protomers of O,O-diethyl O-phenyl phosphorothionate were investigated by carrying out ab initio molecular orbital calculations at the RHF/3–21G* level of theory.  相似文献   

8.
Experimental and theoretical studies on the oxidation of saturated hydrocarbons (n‐hexane, cyclohexane, n‐heptane, n‐octane and isooctane) and ethanol in 28 Torr O2 or air plasma generated by a hollow cathode discharge ion source were made. Ions corresponding to [M + 15]+ and [M + 13]+ in addition to [M ? H]+ and [M ? 3H]+ were detected as major ions where M is the sample molecule. The ions [M + 15]+ and [M + 13]+ were assigned as oxidation products, [M ? H + O]+ and [M ? 3H + O]+, respectively. By the tandem mass spectrometry analysis of [M ? H + O]+ and [M ? 3H + O]+, H2O, olefins (and/or cycloalkanes) and oxygen‐containing compounds were eliminated from these ions. Ozone as one of the terminal products in the O2 plasma was postulated as the oxidizing reagent. As an example, the reactions of C6H14+? with O2 and of C6H13+ (CH3CH2CH+CH2CH2CH3) with ozone were examined by density functional theory calculations. Nucleophilic interaction of ozone with C6H13+ leads to the formation of protonated ketone, CH3CH2C(=OH+)CH2CH2CH3. In air plasma, [M ? H + O]+ became predominant over carbocations, [M ? H]+ and [M ? 3H]+. For ethanol, the protonated acetic acid CH3C(OH)2+ (m/z 61.03) was formed as the oxidation product. The peaks at m/z 75.04 and 75.08 are assigned as protonated ethyl formate and protonated diethyl ether, respectively, and that at m/z 89.06 as protonated ethyl acetate. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Analyses of a series of nitroaromatic compounds using fast atom bombardment (FAB) mass spectrometry are discussed. An interesting ion-molecule reaction leading to [M + O ? H]? ions is observed in the negative ion FAB spectra. Evidence from linked-scan and collision-induced dissociation spectra proved that [M + O ? H]? ions are produced by the following reaction: M + NO2? → [M + NO2]? → [M + O ? H]?. These experiments also showed that M ions are produced in part by the exchange of an electron between M and NO2? species. All samples showed M, [M ? H]? or both ions in their negative ion FAB spectra. Not all analytes studied showed either [M + H]+ and/or M+˙ in the positive ion FAB spectra. No M+˙ ions were observed for ions having ionization energies above ~9 eV.  相似文献   

10.
Treatment of [Ir(bpa)(cod)]+ complex [ 1 ]+ with a strong base (e.g., tBuO?) led to unexpected double deprotonation to form the anionic [Ir(bpa?2H)(cod)]? species [ 3 ]?, via the mono‐deprotonated neutral amido complex [Ir(bpa?H)(cod)] as an isolable intermediate. A certain degree of aromaticity of the obtained metal–chelate ring may explain the favourable double deprotonation. The rhodium analogue [ 4 ]? was prepared in situ. The new species [M(bpa?2H)(cod)]? (M=Rh, Ir) are best described as two‐electron reduced analogues of the cationic imine complexes [MI(cod)(Py‐CH2‐N?CH‐Py)]+. One‐electron oxidation of [ 3 ]? and [ 4 ]? produced the ligand radical complexes [ 3 ]. and [ 4 ].. Oxygenation of [ 3 ]? with O2 gave the neutral carboxamido complex [Ir(cod)(py‐CH2N‐CO‐py)] via the ligand radical complex [ 3 ]. as a detectable intermediate.  相似文献   

11.
The laser desorption mass spectrometry of the oxocarbon squaric acid (3,4-dihydroxy-3-cyclobutene-1,2-dione) and its salts of the form A2C4O4 (A = cation) is described. Both positive and negative ion spectra were obtained. The positive ion spectrum of the acid is characterized by an ion corresponding to loss of CO from [M + H]+. The negative ion spectrum shows an intense [M ? H]? peak in addition to a dimer species. The alkali salt spectra contain [M + A]+ in the positive mode and [M ? A]? and an intense [C4HO4]? in the negative mode. The smaller alkali salts also have an [M + H]+ adduct ion. Unlike the alkali squarates, the ammonium salt shows ions corresponding to losses of neutrals from the molecular adduct in the positive ion spectrum and a dimer species in the negative ion spectrum. Molecular weight information was obtained in all cases. A (bis) dicyanomethylene derivative of potassium squarate was also studied. Some field desorption mass spectrometry results are presented for comparison.  相似文献   

12.
Isoflavone mono‐O‐glycosides were investigated by electrospray ionization tandem mass spectrometry with a quadrupole linear ion trap mass spectrometer in negative ion mode. Isoflavonoids having different positions of glycosylation or methylation were differentiated according to the relative abundances of Y0? and [Y0? H]?? ions generated from the [M ? H]? ion. It is found that the site of glycosyl or methyl group significantly affects relative abundances of the Y0? and [Y0? H]?? ions. In addition, the characteristic ion [Y0? 2H]? was observed in the product ion spectrum of genistein 7‐O‐β‐D ‐glucoside and was also detected, together with the [Y0? CH3]?? and [Y0? H ? CH3]? ions in the product ion spectra of glycitin and 6‐methoxy genistein 7‐O‐β‐D ‐glucoside. The structures of isoflavonoids can be characterized and identified according to the formation of these diagnostic ions. The results obtained from this investigation can promote the rapid identification of isoflavonoids in crude plant extracts. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The unimolecular fragmentations of [M + H]+ and [M – H]? ions from four 2-aryl-2-methyl-1,3-dithianes are described and clarified with the aid of deuterated derivatives. Comparison of the MIKE spectra of [M + H]+ species obtained under chemical ionization and fast atom bombardment (FAB) conditions reveals differences which are attributed to the different energetics involved in the two ionization processes. It is suggested that FAB is a ‘softer’ ionization technique but, at the same time, it provides, for the possibility of solvation, reaction sites not available in gas-phase protonation. [M – H]? species and anionic fragments thereof were generally not obtained under FAB(?) conditions. [M – H]? ions are readily produced in gas-phase reactions with OH? via proton abstraction from C(4) or C(5), and from the 2-methyl substituent; and they fragment according to several reaction pathways.  相似文献   

14.
The hydrolysis kinetics of the dimeric complex (CuATP2? · OH2)2 {D} up to ≈40% ATP conversion at 25°C, pH 5.7–7.8, and [Cu · ATP]0 = (2.07 ± 0.03) × 10?3 mol/l is analyzed by numerical simulation. CuADP? + Pi (Pi is an inorganic phosphate) form from DOH?, and the latter forms rapidly from D. The abstraction of H+ from the coordinated H2O molecule is an irreversible reaction involving an OH? ion from the medium. The maximum possible DOH? concentration at a given pH is reached at the initial stage of hydrolysis (0.3–6.0 min after the initiation of hydrolysis). CuADP? + Pi form from D via two consecutive irreversible steps. The ADP buildup rate in the process is determined by the reversible conformational transformation of DOH? resulting in a pentacovalent intermediate (IntK). OH? ions from the medium are involved both in IntK formation and in the reverse reaction and are a hydrolysis inhibitor. AMP forms from the intermediate IntK3, which forms reversibly from DOH?, OH? ions from the medium being involved in the forward and reverse reactions. This is followed by irreversible (AMPH)? formation involving H3O+ ions from the medium. The rate and equilibrium constants are determined for the formation and decomposition of hydrolysis intermediates. The concentrations of the intermediates are plotted versus time for various pH values. The structures of the intermediates are suggested. The causes of a peak appearing in the initial ADP formation rate versus pH curve are analyzed.  相似文献   

15.
Structure and Properties of Cesium Hydroxide Monohydrate, a Compound Characterized by Layered [H3O2?] Polyanions in its High Temperature Form Cesium hydroxide monohydrate, which was formed at the synthesis of cesium hydride as a by-product, was obtained in form of single crystals by recrystallization from ammonia in high pressure autoclaves. Temperature dependent X-ray structure investigations and measurements of the specific heat show the occurance of several modifications. At 293 K X-ray data prove that it is possible to distinguish between OH? ions and H2O molecules. This can also be confirmed by IR spectroscopy. At 355 K and 400 K the investigations on single crystals show layered [H3O2?] polyanions, which are separated by layers of cesium ions in a hexagonal unit cell.  相似文献   

16.
We report on density functional quantum mechanical calculations of hydroxyapatite. The central focus is dedicated to the local arrangement of hydroxide ions in proximity of defects originating from substituting OH? by F? or O2? ions. At ambient conditions the preferred structure of bulk hydroxyapatite exhibits an ordering of OH? ions oriented in rows along the [001] direction. From zero Kelvin geometry optimizations the orientation inversion of a hydroxide ion was found to be disfavored by 0.165 eV. This picture changes dramatically when replacing one of the OH? ions by a fluoride ion. The preferred hydroxide ion arrangement next to the F? defect was identified as an OH?··F?··HO? constellation, which implies the orientation inversion of one of the neighboring hydroxide ions. An analogous phenomenon was observed for O2? defects.  相似文献   

17.
The NCI(F?) and NCI(NH2?) mass spectra of a series of aliphatic acetates and of methyl and ethyl trimethylacetate have been obtained. The formation of fluoroenolate ions CH2COF? and of carboxamide anions RCONH? (R ? CH3))CH3C). respectively, is observed besides formation of [M ? H]? ions and carboxylate ions RCOO? (R ? CH3, (CH3)3C). The relative intensities of the different anions depend on the structure of the ester molecules and on the primary reactant anions. Usually, the NCI(NH2?) spectra of the acetates are dominated by [M ? H]? ions ([M? D]? ions in the case of trideuteroacetates) fragmenting unimolecularly by elimination of an alcohol. The carboxylate ions are important fragments, too, but carboxamide ions are only observed with large intensities in the NCI(NH2? spectra of the trimethylacetates. The NCI(F?) spectra show much larger intensities of carboxylate ions and fluoroenolate ions. The mechanisms of the fragmentation reactions are discussed. The results indicate that most or even all of the fragment ions in the NCI(F? mass spectra of aliphatic esters are formed by addition-elimination reactions via a tetrahedral intermediate, while competition between direct proton abstraction and addition-elimination reactions occurs in the NCI(NH2?) mass spectra because of the higher basicity of NH2? resulting in an early transition state for direct proton abstraction.  相似文献   

18.
The distinction between 17-epimeric 3,17-dioxygenated hydroxyandrostanes has been made by comparison of both their methane or ammonia positive and OH? negative chemical ionization (CI) mass spectra. In the methane or ammonia positive CI, the 17α-configuration in the eight stereoisomeric 5ξ-androstane-3ξ,17ξ-diols can be determined by the relative abundances of the ion [MH? 2 H2O]+. In the ammonia CI spectra, the ion [M+NH4? H2O]+ possesses only a low abundance, but a comparison of the relative rates of the loss of water v. the loss of ammonia from [M.NH4]+ in the second field-free region allows a clear distinction to be made between the 17α- and 17β-series. In the OH? negative CI mass spectra, the 5ξ-androstane-3-one-17ξ-ols produce an intense ion [M? H? H2O]? in the 17α-series only.  相似文献   

19.
Protonated nitroarginine, [RNO2 + H]+, which contains the nitroguanidine ‘explosophore,’ undergoes homolytic N – N nitro-imine bond cleavage to expel NO2 ? and form a radical cation of arginine in high yield (100 % relative abundance) upon low-energy collision-induced dissociation (CID). Other ionization states of nitroarginine, including [RNO2 - H], and a fixed-charge derivative of nitroarginine do not expel NO2 ? (<1 %), but instead dissociate via heterolytic bond cleavage with abundant losses of small molecules (N2O and H2N2O2) from the nitroguanidine group. The effects of proton mobility on the CID reactions of nitroarginine containing peptides was investigated for peptide derivatives of leucine enkephalin, including XYGGFLRNO2, X = D, G, K, and R, by examining the different protonation states: [M – H]; [M + H]+; and [M + 2H]2+. For [M + H]+ containing the less basic N-terminal residues (X = D, G) and all [M + 2H]2+, mobile proton fragmentation reactions that result in peptide sequence ions dominate. In contrast, for peptides containing the basic N-terminal residues (R and K), the CID spectra of both the [M – H] and [M + H]+ are dominated by the losses of small even-electron neutrals from the nitroarginine side-chain. The fraction of nitroguanidine directed fragmentation of the nitroarginine side chain that results in bond homolysis to form [XYGGFLR]+? by expulsion of NO2 ? increases by more than 10 times as the protonation state changes from [M – H] (<10 %) to [M + 2H]2+ (ca. 90 %) and by about four times as the acidity of the [M + H]+ N-terminal residue increases from R (19.0 %) to D (76.5 %). These results indicate that protonated peptides containing nitroarginine can undergo non-canonical mobile proton triggered radical fragmentation.
Figure
?  相似文献   

20.
Low-energy reactive collisions between the negative molecular ion of a tetrachlorodibenzo-p-dioxin (TCDD) and oxygen inside the collision cell of a triple-stage quadrupole mass spectrometer produce a substitution ion [M ? Cl + O]?, a phenoxide ion [C6H4-nO2Cln], [M ? HCl], and Cl? by which 1,2,3,4-, 1,2,3,6/1,2,3,7- and 2,3,7,8-TCDD isomers can be distinguished either directly or on the basis of intensity ratios. The collision conditions have an important effect on the relative abundances. Energy- and pressure-resolved curves show that the ions formed by a collisionally activated reaction (CAR) process, i.e. [M ? Cl + O]? and [C6H4-n,O2Cln], are favoured by a high pressure of oxygen (3-6 mTorr) (1 Torr = 133.3 Pa) and a low collision energy (0.1-7 eV), whereas the ions formed by a collisionally activated dissociation (CAD) process, i.e. [M ? HCl] and Cl?, are favoured by high pressure and high energy. By choosing a relatively low collision energy (5 eV) and high pressure (4 mTorr), the CAR and CAD ions can be clearly detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号