首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The pentacoordinated ferric and ferrous cytochrome P450(cam) complexes have been investigated by combined quantum mechanical/molecular mechanical (QM/MM) calculations in the presence of a protein/solvent environment and by QM calculations on the isolated QM regions with use of density functional theory. The B3LYP functional has been found more reliable than the BLYP and BHLYP functionals for estimating the relative state energies. The B3LYP/CHARMM calculations with an all-electron basis set for iron give high-spin ground states for the title complexes, in agreement with experiment. The comparison of the B3LYP/CHARMM results of the entire protein system with the B3LYP calculations on the naked QM regions shows that the amount of stabilization by the protein environment is largest for the intermediate-spin states, followed by the high-spin states of the complexes. The calculation of M?ssbauer parameters in the presence of the enzyme environment confirms the double occupation of the d(xz) orbital in the quintet spin state of the ferrous complex, consistent with the computed QM/MM energies in the enzyme environment, while the d(x)2(-)(y)2 orbital is doubly occupied in the gas-phase quintet state.  相似文献   

3.
The interaction between nitric oxide (NO) and the active site of ferric cytochrome P450 was studied by means of density functional theory (DFT), at the generalized gradient approximation level, and of the SAM1 semiempirical method. The electrostatic effects of the protein environment were included in our DFT scheme by using a hybrid quantum classical approach. The active-site model consisted of an iron(III) porphyrin, the adjacent cysteine residue, and one coordinated water molecule. For this system, spin populations and relative energies for selected spin states were computed. Interestingly, the unpaired electron density, the HOMO, and the LUMO were found to be highly localized on the iron and in an appreciable extent on the sulfur coordinated to the metal. This provides central information about the reactivity of nitric oxide with the active site. Since the substitution of a molecule of H2O by NO has been proposed as being responsible for the inhibition of the cytochrome in the presence of nitric oxide, we have analyzed the thermodynamic feasibility of the ligand exchange process. The structure of the nitrosylated active site was partially optimized using SAM1. A low-spin ground state was obtained for the nitrosyl complex, with a linear Fe-N-O angle. The trends found in Fe-N-O angles and Fe-N lengths of the higher energy spin states provided a notable insight into the electronic configuration of the complex within the framework of the Enemark and Feltham formalism. In relation to the protein environment, it was assessed that the electrostatic field has significant effects on several computed properties. However, in both vacuum and protein environments, the ligand exchange reaction turned out to be exergonic and the relative orders of spin states of the relevant species were the same.  相似文献   

4.
Based on the 2HI4 complex taken from the PDB database, molecular docking of 17 substrates in the cytochrome P450 1A2 cavity is performed using the 3D-QSAR algorithm CiS. The arrangement of substrate molecules in the 1A2 isoform cavity is considered, the orientation of the molecular reaction centers relative to heme is analyzed, and the character of interaction between substrates and active site aminoacid residues is investigated. The structures of the modeled complexes allow us to explain metabolic pathways in demethylation reactions and some reactions of hydroxylation, which enables an application of the CiS algorithm to predict metabolic pathways.  相似文献   

5.
6.
7.
细胞色素P450的电化学研究从一个侧面反映了为使细胞色素P450达到工业催化剂的最终目的人们所作的不懈努力。本文从细胞色素P450在电极上的电子转移研究,隧道扫描显微镜的微观成像研究和使用电极作为细胞色素P450的电子给体从而实现细胞色素P450底物转化三方面,评述了近年来细胞色素P450的电化学研究进展。  相似文献   

8.
The active site of HRP Compound I (Cpd I) is modeled using hybrid density functional theory (UB3LYP). The effects of neighboring amino acids and of environmental polarity are included. The low-lying states have porphyrin radical cationic species (Por(*)(+)). However, since the Por(*)(+) species is a very good electron acceptor, other species, which can be either the ligand or side chain amino acid residues, may participate in electron donation to the Por(*)(+) moiety, thereby making Cpd I behave like a chemical chameleon. Thus, this behavior that was noted before for Cpd I of P450 is apparently much more wide ranging than initially appreciated. Since chemical chameleonic behavior property was found to be expressed not only in the properties of Cpd I itself, but also in its reactivity, the roots of this phenomenon are generalized. A comparative discussion of Cpd I species follows for the enzymes HRP, CcP, APX, CAT (catalase), and P450.  相似文献   

9.
Cytochrome P450s constitute a highly fascinating superfamily of enzymes which catalyze a broad range of reactions. They are essential for drug metabolism and promise industrial applications in biotechnology and biosensing. The constant search for cytochrome P450 enzymes with enhanced catalytic performances has generated a large body of research. This review will concentrate on two key aspects related to the identification and improvement of cytochrome P450 biocatalysts, namely the engineering and assaying of these enzymes. To this end, recent advances in cytochrome P450 development are reported and commonly used screening methods are surveyed.  相似文献   

10.
Epoxidation of olefins by hydroperoxo-ferric cytochrome P450   总被引:2,自引:0,他引:2  
The T252A mutant of cytochrome P450cam is unable to form the oxoferryl "active oxygen" intermediate, as judged by its inability to hydroxylate its normal substrate, camphor. In the present study, we demonstrate that T252A P450cam is nonetheless able to epoxidize olefins, due to the action of a second oxidant. However, as shown in earlier radiolytic studies and by the ability of T252A to reduce dioxygen to hydrogen peroxide, the mutant retains the ability to form the hydroperoxo-ferric reaction cycle intermediate. The present results provide strong evidence that hydroperoxo-ferric P450 can serve as a second electrophilic oxidant capable of olefin epoxidation.  相似文献   

11.
The molecular structures and the electronic spectra of the geometric isomers of a model carotenoid polyene, 6,11-dimethylhexadecaheptaene, were calculated. It was concluded that solvent effects and conformational isomerization must be taken into account in order to satisfactorily explain the observed spectra. Molecular structures were calculated using molecular mechanics (MM2), and electronic spectra using the VESCF-MO-CI method including all singly-excited configurations. A method based on the calculated and observed spectra of simple linear polyenes was devised to estimate the solvent effects.  相似文献   

12.
The fundamental nature of reactivity in cytochrome P450 enzymes is currently controversial. Modelling of bacterial P450cam has suggested an important role for the haem propionates in the catalysis, though this finding has been questioned. Understanding the mechanisms of this enzyme family is important both in terms of basic biochemistry and potentially in the prediction of drug metabolism. We have modelled the hydroxylation of camphor by P450cam, using combined quantum mechanics/molecular mechanics (QM/MM) methods. A set of reaction pathways in the enzyme was determined. We were able to pinpoint the source of the discrepancies in the previous results. We show that when a correct ionization state is assigned to Asp297, no spin density appears on the haem propionates and the protein structure in this region remains preserved. These results indicate that the haem propionates are not involved in catalysis.  相似文献   

13.
The mechanism and selectivity of aromatic hydroxylation by cytochrome P450 enzymes is explored using new B3LYP density functional theory computations. The calculations, using a realistic porphyrin model system, show that rate-determining addition of compound I to an aromatic carbon atom proceeds via a transition state with partial radical and cationic character. Reactivity is shown to depend strongly on ring substituents, with both electron-withdrawing and -donating groups strongly decreasing the addition barrier in the para position, and it is shown that the calculated barrier heights can be reproduced by a new dual-parameter equation based on radical and cationic Hammett sigma parameters.  相似文献   

14.
15.
An information system for electronic spectra of transition elements called ESTE—DBS (DBS for data base system) has been described and discussed. This relational system is divided in two main parts, one containing data extracted from experimental spectra, the second created by simulation on the basis of the ligand field theory and some empirical parameters.  相似文献   

16.
Summary P450SU1 and P450SU2 are herbicide-inducible bacterial cytochrome P450 enzymes from Streptomyces griseolus. They have two of the highest sequence identities to camphor hydroxylase (P450cam from Pseudomonas putida), the cytochrome P450 with the first known crystal structure. We have built several models of these two proteins to investigate the variability in the structures that can occur from using different modeling protocols. We looked at variability due to alignment methods, backbone loop conformations and refinement methods. We have constructed two models for each protein using two alignment algorithms, and then an additional model using an identical alignment but different loop conformations for both buried and surface loops. The alignments used to build the models were created using the Needleman-Wunsch method, adapted for multiple sequences, and a manual method that utilized both a dotmatrix search matrix and the Needleman-Wunsch method. After constructing the initial models, several energy minimization methods were used to explore the variability in the final models caused by the choice of minimization techniques. Features of cytochrome P450cam and the cytochrome P450 superfamily, such as the ferredoxin binding site, the heme binding site and the substrate binding site were used to evaluate the validity of the models. Although the final structures were very similar between the models with different alignments, active-site residues were found to be dependent on the conformations of buried loops and early stages of energy minimization. We show which regions of the active site are the most dependent on the particular methods used, and which parts of the structures seem to be independent of the methods.  相似文献   

17.
Hydrogen bonding (H-bonding) is generally thought to play an important role in tuning the electronic structure and reactivity of metal-sulfur sites in proteins. To develop a quantitative understanding of this effect, S K-edge X-ray absorption spectroscopy (XAS) has been employed to directly probe ligand-metal bond covalency, where it has been found that protein active sites are significantly less covalent than their related model complexes. Sulfur K-edge XAS data are reported here on a series of P450 model complexes with increasing H-bonding to the ligated thiolate from its substituent. The XAS spectroscopic results show a dramatic decrease in preedge intensity. DFT calculations reproduce these effects and show that the observed changes are in fact solely due to H-bonding and not from the inductive effect of the substituent on the thiolate. These calculations also indicate that the H-bonding interaction in these systems is mainly dipolar in nature. The -2.5 kcal/mol energy of the H-bonding interaction was small relative to the large change in ligand-metal bond covalency (30%) observed in the data. A bond decomposition analysis of the total energy is developed to correlate the preedge intensity change to the change in Fe-S bonding interaction on H-bonding. This effect is greater for the reduced than the oxidized state, leading to a 260 mV increase in the redox potential. A simple model shows that E degrees should vary approximately linearly with the covalency of the Fe-S bond in the oxidized state, which can be determined directly from S K-edge XAS.  相似文献   

18.
The sesquiterpenoids are a large class of naturally occurring compounds with biological functions and desirable properties. Oxidation of the sesquiterpene (+)-valencene by wild type and mutants of P450cam from Pseudomonas putida, and of P450BM-3 from Bacillus megaterium, have been investigated as a potential route to (+)-nootkatone, a fine fragrance. Wild type P450cam did not oxidise (+)-valencene but the mutants showed activities up to 9.8 nmol (nmol P450)(-1) min(-1), with (+)-trans-nootkatol and (+)-nootkatone constituting >85% of the products. Wild type P450BM-3 and mutants had higher activities (up to 43 min(-1)) than P450cam but were much less selective. Of the many products, cis- and trans-(+)-nootkatol, (+)-nootkatone, cis-(+)-valencene-1,10-epoxide, trans-(+)-nootkaton-9-ol, and (+)-nootkatone-13S,14-epoxide were isolated from whole-cell reactions and characterised. The selectivity patterns suggest that (+)-valencene has one binding orientation in P450cam but multiple orientations in P450BM-3.  相似文献   

19.
Cytochrome P450 BM3 is a versatile enzyme, which holds great promise for applications in biocatalysis and biomedicine. We here report on the generation of a hybrid DNA-protein device based on the two subdomains of BM3, the reductase domain BMR and the porphyrin domain BMP. Both subdomains were fused genetically to the HaloTag protein, a self-labeling enzyme, allowing for the bioconjugation with chloroalkane-modified oligonucleotides. The subdomain-DNA-chimeras could be reassembled by complementary oligonucleotides, thus leading to reconstitution of the monooxygenase activity of BM3 holoenzyme, as demonstrated by conversion of the reporter substrate 12-pNCA. Arrangement of the two chimeras on a switchable DNA scaffold allowed one to control the distance between both subdomains, as indicated by the DNA-dependent activity of the holoenzyme. Furthermore, a switchable chimeric device was constructed, in which monooxygenase activity could be turned off by DNA strand displacement. This study demonstrates that P450 BM3 engineering and strategies of DNA nanotechnology can be merged to open up novel ways for the development of novel screening systems or responsive catalysts with potential applications in drug delivery.  相似文献   

20.
Cytochrome P450 enzymes involve a complex reaction cycle which has been described, for the first time, by a stochastic simulation of the system in the present work. A series of models are developed for a basic catalytic cycle, employing a set of microscopic rate constants for the oxidation of p-alkoxyacylanilides catalyzed by the cytochrome P450 1A2. By analyzing the effects of low concentrations of enzyme and substrate on the system, and the dependence of the system on several rate constants, it is discovered that the system evolves along relatively stable patterns from its initial state, as indicated from different runs of simulations. Strong fluctuations appear at the entrance and exit of the pathway, with very weak fluctuations in the middle sections of the cycle. Although noises are apparent when the reactant populations are very low, basically, the fundamental feature of the P450 cycle based on a microscopic view is that it is deterministic in nature. Meanwhile, the mathematical models we developed are qualitatively validated by a comparison with those experimental results of the P450 cycle. The findings of this work will be helpful for a further deeper understanding of the catalytic mechanism of cytochrome P450 enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号