首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
On the Structural Chemistry of BaMg2X2 (X ? Si, Ge, sn, Pb) The new compounds BaMg2X2 (X ? Si, Ge, Sn, Pb) have been prepared and their structures have been determined. BaMg2Si2 and BaMg2Ge2 crystallize in the ThCr2Si2-type, BaMg2Sn2 and BaMg2Pb2 show two new atomic arrangements, which are layer variants of the former type.  相似文献   

2.
Alternative Ligands. XXVI. M(CO)4 L-Complexes (M ? Cr, Mo, W) of the Chelating Ligands Me2ESiMe2(CH2)2E′ Me2 (Me ? CH3; E ? P, As; E′ ? N, P, As) The reaction of M(CO)4NBD (NBD = norbornadiene; M ? Cr, Mo, W) with the ligands Me2ESiMe2(CH2)2E′ Me2 yields the chelate complexes (CO)4M[Me2ESiMe2]) for E,E′ ? P, As, but not for E and /or E′ ? N. The NSi group is not suited for coordination because of strong (p-d)π-interaction. In the case of the ligands with E ? P or As and E′ ? N chelate complexes can be detected in the reaction mixture, but isolable products are complexes with two ligands coordinated via the E donor group. The new compounds are characterized by analytical and spectroscopic (IR, NMR, MS) investigations. The spectroscopic data are also used to deduce the coordinating properties of the ligands. X-ray diffraction studies of the molybdenum complexes (CO)4Mo[Me2ESiMe2(CH2)2AsMe 2] (E ? P, As) in accord with the observed coordination effects show only small differences between SiE and CE donor functions. Attempts to use the ligands Me2ESiMe2(CH2)2AsMe2 (E ? P, As) for the preparation of Fe(CO)3L complexes result in the fission of the SiE bonds and the formation of the binuclear systems Fe2(CO)6(EMe2)2 (E ? P, As) together with the disilane derivative [Me2Si(CH2)2AsMe2]2.  相似文献   

3.
4.
5.
6.
Perfluoromethyl-Element-Ligands. XXXV. Reactivity of Metallated Phosphanes and Arsanes of the Type π-C5H5(CO)3MER2 (M ? Cr, Mo, W; E ? P, As; R ? CF3, CN) The influence of the complex fragments π-C5H5(CO)3M (M ? Cr, Mo, W) on the basicity of the metallated phosphanes or arsanes π-C5H5(CO)3MER2 (E ? P, As; R ? CF3, CN) has been investigated by reactions with sulfur, methyliodide, fluorotrichloromethane, and W(CO)5THF, respectively. π-C5H5(CO)3ME(CF3)2 (E ? P: 1a–c ; E ? As: 2a–c ) react with sulfur only for E ? P to give the complexes π-C5H5(CO)3P(S)(CF3)2 ( 5a–c ) in good yield. The attempted thermal transformation of the phosphane sulfides to η2 coordinated (CF3)2P?S complexes proves unsuccessful. The reactions of 1a–c, 2a–c and π-C5H5(CO)3MP(CN)2 ( 3a–c ) with CH3I or CCl3F do not lead to onium salts, but to cleavage of the M–E bonds forming π-C5H5(CO)3MX (X ? I, Cl) and CH3ER2 and R2ECCl2F, respectively. The reactivity depends on ER2 and M: P(CF3)2 > P(CN)2 > As(CF3)2; Cr > Mo > W. Due to the low donor ability of the complexes 1a–c, 2a–c and 3a–c binuclear compounds π-C5H5(CO)3MER2W(CO)5 (E ? As, R ? CF3: 11a–c ; E ? P, R ? CN: 12a–c ; ER2?P(CN)Ph: 13a, b ) are obtained only with the highly reactive W(CO)5THF. In case of the (CF3)2P bridged derivatives spontaneous CO-elimination leads to the threemembered ring systems ( 10a–c ).  相似文献   

7.
8.
9.
10.
11.
New Tetrapnictidotitanates(IV): Na3M3[TiX4] with M ? Na/Sr, Na/Eu and X ? P, As The four novel tetrapnictidotitanates(IV) Na4Sr2TiP4, Na4Sr2TiAs4, Na4.3Eu1.7TiP4 and Na4.3Eu1.7TiAs4 were prepared from the binary pnictides NaX, M3X, M′X (X ? P, As and M′ ? Sr, Eu) and elementary titanium in tantalum ampoules. The air and moisture sensitive transition metal compounds form dark red hexagonal crystals. They are semiconductors with Eg = 1.8eV (Sr) and Eg = 1.3eV (Eu), respectively. The compounds are isotypic with Na6ZnO4 (space group P63mc (no. 186); hP22; Z = 2; Na4Sr2TiP4; a = 936.8(1) pm, c = 740.5(1) pm; Na4Sr2TiAs4: a = 958.2(1) pm, c = 757.1(1) pm; Na4.3Eu1.7TiP4: a = 929.9(2) pm, c = 732.0(2) pm; Na4.3Eu1.7TiAs4: a = 953.9(1) pm, c = 749.5(1) pm). Main structural units are polar oriented [TiP4]8? and [TiAs4]8? tetrahedral anions with d (Ti? P) = 240.2(3) pm and d (Ti? As) = 248.6(3) pm.  相似文献   

12.
13.
14.
15.
16.
17.
18.
Crystal Structure Investigations of Compounds with the A3(M, Nb)8O21-Type (A ? Tl, Ba; M ? Fe, Ni) Tl3Fe0,5Nb7,5O21 (A), a hitherto unknown phase of the A3(M, Nb)8O21-type, and Ba3Fe2Nb6O21 (B), Ba3Ni1.33Nb6,66O21 (C) were prepared and investigated by single crystal X-ray technique. ((A): a = 9.145(1), c = 11.942(1) Å; (B): a = 9.118(2), c = 11.870(1) Å; (C) a = 9.173(3), c = 11.923(1) Å, space group D? P63/mcm, Z = 2). There is a statistic occupation of the M-positions by Nb5+ and Fe3+ or Nb5+ and Ni2+, respectively. An other compound Ba3Fe2Ta6O21 is partially ordered in respect to Ta5+ and Fe3+. Calculations of the Coulomb-part of lattice energy are discussed.  相似文献   

19.
20.
Synthesis, Crystal Structure, and Properties of a New Sialon – SrSiAl2O3N2 The sialon SrSiAl2O3N2 was obtained as a coarsly crystalline solid by reaction of silicon diimide, aluminum nitride, and strontium carbonate under N2 atmosphere in a high-frequency furnace at 1650 °C. According to the single-crystal structure determination the title compound is isotypic with LnSi3N5 (Ln = La, Ce, Nd, Pr). SrSiAl2O3N2 (P212121, a = 491.98(6), b = 789.73(7), c = 1134.94(18) pm, Z = 4, R1 = 0.0439, wR2 = 0.0939). In the solid a three-dimensional network structure of corner sharing SiON3, AlO3N, and AlO2N2 tetrahedra occurs. Lattice energetic calculations using the MAPLE concept confirm an unequivocally correct crystallographic differentiation between N and O as well as Al and Si atoms, respectively (Al–O: 167.4(5)–170.6(6); Al–N: 175.4(6)–179.4(6); Si–O: 171.2(6); SiN: 176.7(6)–179.6(6) pm). The Sr2+ ions are located in the voids of the (SiAl2O3N2)2– framework (Sr–O: 250.4(6)–304.2(6); Sr–N: 287.4(6) 318.2(6) pm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号