首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of the reaction between CH3 and HCl was studied in a tubular reactor coupled to a photoionization mass spectrometer. Rate constants were measured as a function of temperature (296–495 K) and were fitted to an Arrhenius expression: k1 = 5.0(±0.7) × 10?13 exp{?1.4(±0.3) kcal mol?1/RT} cm3 molecule?1 s?1. This information was combined with known kinetic parameters of the reverse reaction to obtain Second Law determinations of the methyl radical heat of formation {34.7(±0.6) kcal mol?1} and entropy {46(±2) cal mol?1 K?1} at 298 K. Using the known entropy of CH3, a more accurate Third Law determination of the CH3 heat of formation at this temperature was also obtained {34.8(±0.3) kcal mol?1}. The values of k1 obtained in this study are between those reported in prior investigations. The results were also used to test the accuracy of the thermochemical information which can be obtained from kinetic studies of R + HX (X = Cl, Br, I) reactions of the type described here.  相似文献   

2.
Ab initio molecular orbital calculations have been used to study the condensation reactions of CH3? with NH3, H2O, HF and H2S. Geometry optimization has been carried out at the Hartree—Fock (HF) level with the split-valence plus d-polarization 6-31G* basis set and improved relative energies obtained from calculations which employ the split-valence plus dp-polarization 6-31G** basis set with electron correlation incorporated via Moller—Plesset perturbation theory terminated at third order (MP3). Zero-point vibrational energies have also been determined and taken into account in deriving relative energies. The structures of the intermediates CH3XH? (X = NH2, OH, F and SH) have been obtained and dissociation of these intermediates into CH2X+ + H2 on the one hand, and CH3? + HX on the other, has been examined. It is found that for those species for which the methyl condensation reaction is observed to have an appreciable rate (X = NH2 and SH), the transition structure for hydrogen elimination from CH3XH? lies significantly lower in energy than the reactants CH3? + HX (by 75 and 70 kJ mol?1 respectively). On the other hand, for those species for which the methyl condensation reaction is not observed (X = OH and F), the transition structure for H2 elimination lies higher in energy than CH3? + HX (by 6 and 87 kJ mol?1 respectively).  相似文献   

3.
The Beckmann rearrangement (BR) plays an important role in a variety of industries. The mechanism of this reaction rearrangement of oximes with different molecular sizes, specifically, the oximes of formaldehyde (H2C?NOH), Z‐acetaldehyde (CH3HC?NOH), E‐acetaldehyde (CH3HC?NOH) and acetone (CH3)2C?NOH, catalyzed by the Faujasite zeolite is investigated by both the quantum cluster and embedded cluster approaches at the B3LYP level of theory using the 6‐31G (d,p) basis set. To enhance the energetic properties, single point calculations are undertaken at MP2/6‐311G(d,p). The rearrangement step, using the bare cluster model, is the rate determining step of the entire reaction of these oxime molecules of which the energy barrier is between 50–70 kcal mol?1. The more accurate embedded cluster model, in which the effect of the zeolitic framework is included, yields as the rate determining step, the formaldehyde oxime reaction rearrangement with an energy barrier of 50.4 kcal mol?1. With the inclusion of the methyl substitution at the carbon‐end of formaldehyde oxime, the rate determining step of the reaction becomes the 1,2 H‐shift step for Z‐acetaldehyde oxime (30.5 kcal mol?1) and acetone oxime (31.2 kcal mol?1), while, in the E‐acetaldehyde oxime, the rate determining step is either the 1,2 H‐shift (26.2 kcal mol?1) or the rearrangement step (26.6 kcal mol?1). These results signify the important role that the effect of the zeolite framework plays in lowering the activation energy by stabilizing all of the ionic species in the process. It should, however, be noted that the sizeable turnover of a reaction catalyzed by the Brønsted acid site might be delayed by the quantitatively high desorption energy of the product and readsorption of the reactant at the active center.  相似文献   

4.
Infrared and Raman spectra (3600–3620cm?1) of methyl propionate CH3CH2-COOCH3, CH3CH2COOCD3 and methyl isobutyrate (CH3)2CHCOOCH3, (CH3)2CHCOOCD3, in liquid and crystalline states, have been recorded. Rotational isomerism, by rotation around the C-C bond α to the carbonyl group, is detected and the energy difference between the conformers is 1.1 ±0.3 kcal mol?1 for methyl propionate and 0.5 ±0.1 kcal mol?1 for methyl isobutyrate. Vibrational assignments in terms of group frequencies are proposed for each conformer, only the more stable being present in the crystal.  相似文献   

5.
Using density functional theory methods, we have studied carbon trioxide, its adsorption and dissociation on Ag(100). In the gas phase, two isomers are found, D3h and C2v, with the latter of 2.0 kcal mol?1 lower in energy at the PW91PW91/6?31G(d) level. For CO3 on Ag(100), the calculated adsorption energy is 91.2 and 89.1 kcal mol?1 for the bi‐coord perpendicular and tri‐coord parallel structures, respectively. Upon the adsorption, 0.50 ~ 0.56 electron is transferred from silver to CO3, indicative of significant ionic characters of the adsorbate‐surface bonding. In addition, the geometry of CO3 is largely changed by its strong interaction with silver. For CO3(ad) → O(ad) + CO2(gas), the energy barrier is calculated to be 19.8 kcal mol?1 through the bi‐coord path. The process is endothermic with an enthalpy change of +17.3 ~ +26.7 kcal mol?1 and the weakly chemisorbed CO2 is identified as an intermediate on the potential energy surface. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

6.
The temperature-dependent 1H NMR spectra have been measured for the bisadducts 2a and 3 of 1-cyano-1-methylethyl radicals with α-phenyl-N-benzylnitrone [N-(benzylidene)benzylamine N-oxide] and nitrosobenzene, respectively. A free energy of activation of ΔG = 62.8 ~ 64.4 kJ mol?1 (15.0 ~ 15.4 kcal/mol) at 24 ~ 45 °C has been obtained for 2a by applying the Eyring equation to the rate constants at the coalescence points of the methyl signals. The line shapes due to four methyl signals exchanging between two sites of equal population have been simulated by the theoretical calculation to give an activation enthalpy of 52.3 kJ mol?1 (12.5 kcal/mol) and the corresponding entropy of ?39.3 J K?1 mol?1 for 3. As the inversion barriers at pyramidal nitrogens of hydroxylamine derivatives should be lowered in N-phenyl derivatives because of conjugation, the rate process which is responsible for the observed temperature dependent NMR spectra can be assigned to restricted rotation around one of the skeletal C? N? O? C bonds. The relevance of the results to the conformations of nitroxides derived from the spin trapping method using α-phenyl-N-t-butylnitrone [N-(benzylidene)-t-butylamine N-oxide] and nitroso spin traps is discussed.  相似文献   

7.
Geometry optimizations at the HF/3-21G(*) and HF/6-31G* levels of ab initio theory have been carried out for various isomers of model disubstituted phosphoranes PH3XY(X, Y?OH, CH3, NH2, and SH). Reasonable agreement was obtained between the optimized geometries and available crystal structure data for analogous compounds. The isomers were further characterized by frequency calculations. The MP2/6-31G*//6-31G* + ZPE energy data reveal that the interactions between the ligands are relatively small (0–4 kcal mol?1) for the most stable conformations of the isomers. Hence, for these conformations the apicophilicities (based upon monosubstituted phosphoranes) are approximately additive. The less stable PH3XY conformations are in general transition states or higher-order saddle points, and their interligand interactions are larger in magnitude (up to 10 kcal mol?1); the results with these conformations suggest that apicophilicities may not be as additive for some highly substituted phosphoranes. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
Geometries have been optimized using molecular-orbital calculations (a) with a 4-31G Gaussian basis set for carbanions CH2X? where X = H, CH3, NH2, OH, F, C?CH, CH?CH2, CHO, COCH3, CN, and NO2; and (b) with an STO -3G basis set for methyl acetate and acetyl deprotonated methyl acetate. All the carbanions containing unsaturated substituents are planar, with a considerable shortening of the C? X bond. Carbanions containing saturated substituents are pyramidal with the out-of-plane angle α increasing with the electronegativity of the substituent. Double-zeta basis set calculations give proton affinities over the range 449 (for CH3CH2?) to 355 kcal/mol (for CH2NO2?), with all unsaturated anions having smaller affinities than saturated anions. The correlation of proton affinities with 1s binding energies, and with charges on both the carbon of the anion and on the acidic proton of the neutral molecule are examined.  相似文献   

9.
The collisional activation mass spectra prove that non-decomposing ionized methyl acetate [CH3COOCH3]+? and its enolic isomer [CH2?C(OH)OCH3]+? exist as stable species in potential wells. It is shown, however, that prior to CH3O? loss the decomposing [CH2?C(OH)OCH3]+? ion isomerizes via a rate determining symmetry forbidden [1.3] hydrogen rearrangement to ionized methyl acetate. The alternative mode of two consecutive formally symmetry allowed [1.2] hydrogen migrations can be certainly excluded for this isomerization. The activation energy of such hydrogen rearrangements is of the order of 41–83 kcal · mol?1 depending on the electronic nature of the cations (“open” or “closed” shell systems).  相似文献   

10.
Treatment of the salt [PPh4]+[Cp*W(S)3]? ( 6 ) with allyl bromide gave the neutral complex [Cp*W(S)2S‐CH2‐CH?CH2] ( 7 ). The product 7 was characterized by an X‐ray crystal structure analysis. Complex 7 features dynamic NMR spectra that indicate a rapid allyl automerization process. From the analysis of the temperature‐dependent NMR spectra a Gibbs activation energy of ΔG (278 K)≈13.7±0.1 kcal mol?1 was obtained [ΔH≈10.4±0.1 kcal mol?1; ΔS≈?11.4 cal mol?1 K?1]. The DFT calculation identified an energetically unfavorable four‐membered transition state of the “forbidden” reaction and a favorable six‐membered transition state of the “Cope‐type” allyl rearrangement process at this transition‐metal complex core.  相似文献   

11.
J. Zakrzewski 《Chromatographia》2004,59(11-12):775-777
Gas chromatographic analysis of 1-chloroethyl acetate and 1-bromoethyl acetate revealed that the equilibrium between acetaldehyde, acetyl halide and the corresponding 1-haloethyl acetates exists in the injector of the chromatograph. Analyses were performed under strictly isothermal conditions of both injector and column at different temperatures. The results allowed calculation of the enthalpy of the reaction: CH3CHO + CH3COX → CH3COOCHXCH3 Enthalpies calculated for the reaction are as follows: ?17.3 [kcal mol?1] (X=Cl) and ?18.5 [kcal mol?1] (X=Br).  相似文献   

12.
The rate constant of the primary decomposition step was determined for four symmetrical and four unsymmetrical azoalkanes. From the experimental activation energies and some literature enthalpy data, the following enthalpies of formation of radicals and group contributions were calculated: ΔH? (CH3N2) = 51.5 ± 1.8 kcal mol?1, ΔH? (C2H5N2) = 44.8 ± 2.5 kcal mol?1, ΔH? (2?C3H7N2) = 37.9 ± 2.2 kcal mol?1, [NA-(C)] = 27.6 ± 3.7 kcal mol?1, [NA-(?A) (C)] = 61.2 ± 3.1 kcal mol?1.  相似文献   

13.
The effect of the nature of substituents at sp2-hybridized silicon atom in the R2Si=CH2 (R = SiH3, H, Me, OH, Cl, F) molecules on the structure and energy characteristics of complexes of these molecules with ammonia, trimethylamine, and tetrahydrofuran was studied by the ab initio (MP4/6-311G(d)//MP2/6-31G(d)+ZPE) method. As the electronegativity, χ, of the substituent R increases, the coordination bond energies, D(Si← N(O)), increase from 4.7 to 25.9 kcal mol−1 for the complexes of R2Si=CH2 with NH3, from 10.6 to 37.1 kcal mol−1 for the complexes with Me3N, and from 5.0 to 22.2 kcal mol−1 for the complexes with THF. The n-donor ability changes as follows: THF ≤ NH3 < Me3N. The calculated barrier to hindered internal rotation about the silicon—carbon double bond was used as a measure of the Si=C π-bond energy. As χ increases, the rotational barriers decrease from 18.9 to 5.2 kcal mol−1 for the complexes with NH3 and from 16.9 to 5.7 kcal mol−1 for the complexes with Me3N. The lowering of rotational barriers occurs in parallel to the decrease in D π(Si=C) we have established earlier for free silenes. On the average, the D π(Si=C) energy decreases by ∼25 kcal mol−1 for NH3· R2Si=CH2 and Me3N·R2Si=CH2. The D(Si←N) values for the R2Si=CH2· 2Me3N complexes are 11.4 (R = H) and 24.3 kcal mol−1 (R = F). sp2-Hybridized silicon atom can form transannular coordination bonds in 1,1-bis[N-(dimethylamino)acetimidato]silene (6). The open form (I) of molecule 6 is 35.1 and 43.5 kcal mol−1 less stable than the cyclic (II, one transannular Si←N bond) and bicyclic (III, two transannular Si←N bonds) forms of this molecule, respectively. The D(Si←N) energy for structure III was estimated at 21.8 kcal mol−1. Dedicated to Academician N. S. Zefirov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1952–1961, September, 2005.  相似文献   

14.
Loss of H2S is the characteristic Cys side‐chain fragmentation of the [M? H]? anions of Cys‐containing peptides. A combination of experiment and theory suggests that this reaction is initiated from the Cys enolate anion as follows: RNH‐?C(CH2SH)CONHR′ Ø [RNHC(?CH2)CONHR′ (HS?)] Ø [RNHC(?CH2)CO‐HNR′‐H]?+H2S. This process is facile. Calculations at the HF/6‐31G(d)//AM1 level of theory indicate that the initial anion needs only ≥20.1 kcal mol?1 of excess energy to effect loss of H2S. Loss of CH2S is a minor process, RNHCH(CH2SH)CON?‐R′ Ø RNHCH(CH2S?)CONHR′ Ø RNH ?CHCONHR+CH2S, requiring an excess energy of ≥50.2 kcal mol?1. When Cys occupies the C‐terminal end of a peptide, the major fragmentation from the [M–H]? species involves loss of (H2S+CO2). A deuterium‐labelling study suggests that this could either be a charge‐remote reaction (a process which occurs remote from and uninfluenced by the charged centre in the molecule), or an anionic reaction initiated from the C‐terminal CO2? group. These processes have barriers requiring the starting material to have an excess energy of ≥79.6 (charge‐remote) or ≥67.1 (anion‐directed) kcal mol?1, respectively, at the HF/6‐31G(d)//AM1 level of theory. The corresponding losses of CH2O and H2O from the [M? H]? anions of Ser‐containing peptides require ≥35.6 and ≥44.4 kcal mol?1 of excess energy (calculated at the AM1 level of theory), explaining why loss of CH2O is the characteristic side‐chain loss of Ser in the negative ion mode. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
The kinetics of the Diels-Alder additions of CH2 = CHCN, CH2 = C(CH3) CN, and cis- and trans-CH3CH = CHCN to cyclohexa-1, 3-diene have been studied in the gas phase. The stereochemistry of these reactions is discussed. In terms of a biradical mechanism, a minimum value of 4.1 ± 0.8 kcal mol?1 for the stabilizing effect of a CN group vis-à-vis a methyl group is shown to fit the experimental activation energies.  相似文献   

16.
Reaction of the cyclic thioacetal (RS)2CHCHO [R=1/2×? (CH2)3? ] with HCCCOMe, followed by treatment with TsCl/DABCO (Ts=tosyl, DABCO=1,4‐diazabicyclo[2.2.2]octane) affords the mono‐protected 1,4‐benzoquinone dithioacetal. The reactivity of this SR‐protected 1,4‐benzoquinone has been compared with the behavior of the analogous OR‐protected acetal in copper‐catalyzed additions of ZnMe2 by using chiral phosphoramidite ligands. The activation energy for 1,4‐methylation of the latter OR‐acetals with ZnMe2 (>95 % ee) has been determined for two CuX2 pre‐catalysts (X=OAc, 12.2 kcal mol?1; X=OTf, 6.7 kcal mol?1; Tf=triflate). The dithioacetal SR aromatizes in the presence of CuI/ZnMe2 giving 1,4‐HOC6H4S(CH2)3SMe through C? S bond formation. The disparate behavior of these two very closely related substrates is in accordance with the formation of closely related cuprate intermediates that were optimized by DFT calculations, supporting the synthetic and kinetic studies and thus defining the mechanisms of both pathways.  相似文献   

17.
The infrared spectra of gaseous and solid tertiary-butylphosphine, [(CH3)3CPH2], have been recorded from 50 cm?1 to 3500 cm?1. The Raman spectra of gaseous, liquid and solid (CH3)3CPH2 have been recorded from 10 to 3500 cm?1. A vibrational assignment of the 42 normal modes has been made. A harmonic approximation of the methyl torsional barrier from observed transitions in the solid state gave a result of 4.22 kcal mol?1 and 3.81 kcal mol?1 in the gaseous state. Hot band transitions for the phosphino torsional mode have been observed. The potential function for internal rotation about the C-P bond has been calculated. The two potential constants were determined to be: V3 = 2.79 ± 0.01 kcal mol?1 and V6 = 0.07 ± 0.01 kcal mol?1.  相似文献   

18.
The rate of the gas phase reaction of hydroxyl radical with methyl nitrate has been measured to be (3.4 ± 0.4) × 10?14 cm3 molecule?1 s?1 at 298 K using flow discharge/ resonance fluorescence techniques. By means of correlation methods, this rate determination is used to predict a vertical ionization potential of 12.6 eV, a bond dissociation energy for H? CH2ONO2 of 101 kcal mol?1, and a rate for O(3P) reaction with methyl nitrate of ca. 9 × 10?17 cm3 molecule?1 s?1. In conjunction with previously derived relative data for reaction of alkyl nitrates with OH radical in the gas phase, a priori estimated reactivities for 1-, 2-, and 3-positionally substituted straight chain alkyl nitrates have been reexamined. Revised reactivities for OH abstraction of specific hydrogens substituted on straight chain alkyl nitrates are presented and discussed, and an atmospheric lifetime of ca. 2 yrs is estimated for methyl nitrate removal due to OH.  相似文献   

19.
The correlation consistent composite approach (ccCA) has been used to compute the enthalpies of formation (ΔHf′s) for 60 closed‐shell, neutral hydrocarbon molecules selected from an established set (Cioslowski et al., J. Chem. Phys. 2000 , 113, 9377). This set of thermodynamic values includes ΔHf's for hydrocarbons that span a range of molecular sizes, degrees of aromaticity, and geometrical configurations, and, as such, provides a rigorous assessment of ccCA's applicability to a variety of hydrocarbons. The ΔHf's were calculated via atomization energies, isodesmic reactions, and hypohomodesmotic reactions. In addition, for 12 of the aromatic molecules in the set that are larger than benzene, the energies of ring‐conserved isodesmic reactions were used to calculate the ΔHf′s. Using an atomization energy approach to determine the ΔHf′s, the lowest mean absolute deviation (MAD) from experiment achieved by ccCA for the 60 hydrocarbons was 1.10 kcal mol?1. The use of the mixed Gaussian/inverse exponential complete basis set extrapolation scheme (ccCA‐P) in conjunction with hypohomodesmotic reaction energies resulted in a MAD of 0.87 kcal mol?1. This value is compared with MADs of 1.17, 1.18, and 1.28 kcal mol?1 obtained via the Gaussian‐4 (G4), Gaussian‐3 (G3), and Gaussian‐3(MP2) [G3(MP2)] methods, respectively (using the hypohomodesmotic reactions). © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Selected portions of the S0 and T1 potential energy surfaces of acetaldehyde surveyed in our earlier studies have been reexamined. The assumption of the additivity of basis-set polarization and of electron correlation effects used extensively in our earlier work on acetaldehyde has been tested through explicit polarized basis-set electron-correlation calculations. The “additivity assumption” introduces average absolute errors in energy differences of only 1.9 (MP3) to 3.4 (MP2) kcal mol?1 in seven comparisons. The effects of using 6?31G** SCF optimized geometries as opposed to single-point calculations on 3?21G SCF structures (6–31G**//3–21G) as in our previous papers were examined. In six comparisons, the average absolute error in relative SCF energies introduced by the use of the 3–21G geometries rather than the fully consistent 6–31G ones was only 0.3 kcal mole?1. After a uniform scaling procedure, comparisons of the 6–31G** and 3–21G calculated vibrational frequencies with experiment for CH3CHO (S0), CH4, and CO (20 comparisons) yielded absolute differences of 41 cm?1 (6–31G**) and 57 cm?1 (3–21G). All these more elaborate calculations support for the specific case of acetaldehyde and various minima and transition states of relevance to its photochemistry, the commonly used and practically important approximations (e.g., additivity) made in our earlier studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号