首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A family of artificial nucleosides has been developed by applying the CuI‐catalyzed Huisgen 1,3‐dipolar cycloaddition. Starting from 2‐deoxy‐β‐D ‐glycosyl azide as a common precursor, three bidentate nucleosides have been synthesized. The 1,2,3‐triazole involved in all three nucleobases is complemented by 1,2,4‐triazole ( TriTri ), pyrazole ( TriPyr ), or pyridine ( TriPy ). Molecular structures of two metal complexes indicate that metal‐mediated base pairs of TriPyr may not be fully planar. An investigation of DNA oligonucleotide duplexes comprising the new “click” nucleosides showed that they can bind AgI to form metal‐mediated base pairs. In particular the mispair formed from TriPy and the previously established imidazole nucleoside is significantly stabilized in the presence of AgI. A comparison of different oligonucleotide sequences allowed the determination of general factors involved in the stabilization of nucleic acids duplexes with metal‐mediated base pairs.  相似文献   

2.
Influence of Nitrogen Heterocyclic Compounds and of Non Condensed Azoles in Particular on ‘Prebiotic’ Condensation Reactions of α-Amino Acids Induced by Polyphosphates in Aqueous Solution In previous experiments aqueous solutions of α-aminoacids in the presence of cyclic or linear polyphosphates, pH range 7–11, yielded up to 40% of dipeptide but only 0.3-0.5% of tripeptide [1] [2]. By addition of imidazole the yield of tripeptide could be increased about ten times [2]. Therefore, we have studied for the condensation reaction of glycine the influence of the addition to aqueous solutions 0.1 M in glycine and 0.1 M in trimetaphosphate at room temperature, pH range 6.7–8.9, of several azoles (pyrrole, pyrazole, imidazole, 1,2,4-triazole and tetrazole), of adenine, guanine, uracil, cytosine, and of several nucleosides (adenosine, guanosine, uridine and cytidine). Among the products studied, only 1,2,4-triazole and imidazole improve appreciably, by a factor of about 15, the yield of triglycine (up to 7.8%). While it is very likely that imidazole has played an important role during prebiotic chemical evolution, it is not clear at present whether 1,2,4-triazole has a prebiotic significance.  相似文献   

3.
Metal-mediated base pair formation, resulting from the interaction between metal ions and artificial bases in oligonucleotides, has been developed for its potential application in nanotechnology. We have recently found that the T:T mismatched base pair binds with Hg(II) ions to generate a novel metal-mediated base pair in duplex DNA. The thermal stability of the duplex with the T-Hg-T base pair was comparable to that of the corresponding T:A or A:T. The novel T-Hg-T base pair involving the natural base thymine is more convenient than the metal-mediated base pairs involving artificial bases due to the lack of time-consuming synthesis. Here, we examine the specificity and thermodynamic properties of the binding between Hg(II) ions and the T:T mismatched base pair. Only the melting temperature of the duplex with T:T and not of the perfectly matched or other mismatched base pairs was found to specifically increase in the presence of Hg(II) ions. Hg(II) specifically bound with the T:T mismatched base pair at a molar ratio of 1:1 with a binding constant of 10(6) M(-1), which is significantly higher than that for nonspecific metal ion-DNA interactions. Furthermore, the higher-order structure of the duplex was not significantly distorted by the Hg(II) ion binding. Our results support the idea that the T-Hg-T base pair could eventually lead to progress in potential applications of metal-mediated base pairs in nanotechnology.  相似文献   

4.
A conformational switch can be induced upon the addition of transition-metal ions to oligonucleotides that contain a row of successive artificial nucleobases flanked by complementary sequences of natural nucleobases, provided that the artificial bases cannot undergo self-pairing via hydrogen bonding but only via the formation of metal-ion-mediated base pairs. Such oligonucleotides adopt a hairpin structure in the absence of transition-metal ions, yet they show a preference for the formation of a regular double helix if the appropriate metal ions are present. We report here our experimental data on the structure of the oligonucleotide d(A7X3T7) (A=adenine, T=thymine, X=1,2,4-triazole) in the absence and presence of silver(I). This study comprising temperature-dependent UV spectroscopy, CD spectroscopy, MALDI-TOF measurements, fluorescence spectroscopy, and dynamic light scattering opens up a new approach to the generation of a large variety of metal-ion sensors with the possibility of fine-tuning their sensing capabilities, depending on the artificial nucleoside that is used.  相似文献   

5.
The detailed analysis of the experimental spectrophotometric data obtained from solutions containing the acid-base indicator thymol blue (TB) and mercury(II) (Hg(II)) coupled with data processing by means of the SQUAD program, a chemical model was determined that includes the formation of complexes indicator-metal ion (HgTB and HgOTB), dimer species (H3TB2 and H4TB2) and monomer species (HTB and TB). The values of the overall formation constants (log beta) were calculated for the chemical equilibria involved: TB+Hg<-->HgTB log beta=16.047 +/- 0.043, TB+Hg+H2O<-->HgOHTB+H log beta=7.659 +/- 0.049, 2TB+4H<-->H4TB2 log beta=31.398 +/- 0.083, 2TB+3H<-->H3TB2 log beta=29.953 +/- 0.084 and H+TB<-->HTB-log beta=8.900. To compliment the present research, the values of the absorptivity coefficients are included for all the species involved, within a wide range of wavelengths (250-700 nm). The latter were used subsequently to carry simulations of the absorption spectra at various pH values, thus corroborating that the chemical model proposed is fully capable to describe the experimental information. Voltammetric study performed evidenced the formation of a complex with a 1:1 stoichiometry Hg(II):TB.  相似文献   

6.
The incorporation of transition‐metal ions into nucleic acids by using metal‐mediated base pairs has proved to be a promising strategy for the site‐specific functionalization of these biomolecules. We report herein the formation of Ag+‐mediated Hoogsteen‐type base pairs comprising 1,3‐dideaza‐2′‐deoxyadenosine and thymidine. By defunctionalizing the Watson–Crick edge of adenine, the formation of regular base pairs is prohibited. The additional substitution of the N3 nitrogen atom of adenine by a methine moiety increases the basicity of the exocyclic amino group. Hence, 1,3‐dideazaadenine and thymine are able to incorporate two Ag+ ions into their Hoogsteen‐type base pair (as compared with one Ag+ ion in base pairs with 1‐deazaadenine and thymine). We show by using a combination of experimental techniques (UV and circular dichroism (CD) spectroscopies, dynamic light scattering, and mass spectrometry) that this type of base pair is compatible with different sequence contexts and can be used contiguously in DNA double helices. The most stable duplexes were observed when using a sequence containing alternating purine and pyrimidine nucleosides. Dispersion‐corrected density functional theory calculations have been performed to provide insight into the structure, formation and stabilization of the twofold metalated base pair. They revealed that the metal ions within a base pair are separated by an Ag???Ag distance of about 2.88 Å. The Ag–Ag interaction contributes some 16 kcal mol?1 to the overall stability of the doubly metal‐mediated base pair, with the dominant contribution to the Ag–Ag bonding resulting from a donor–acceptor interaction between silver 4d‐type and 4s orbitals. These Hoogsteen‐type base pairs enable a higher functionalization of nucleic acids with metal ions than previously reported metal‐mediated base pairs, thereby increasing the potential of DNA‐based nanotechnology.  相似文献   

7.
ESI mass spectrometry was used to investigate the europium complexation by tridentate ligands L identical with 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)-pyridines (DATP) that have shown unique separation properties of actinides(III) from lanthanides(III) in nitric acid solutions. Complexes of three ligands, namely methyl (DMTP), n-propyl (DnPTP), and iso-propyl (DiPTP), have been investigated in acidic solutions to check the aqueous-phase stability of Eu(L)(3)(3+) ions identified previously in the solid state. The data obtained show, first, the presence of stable Eu(L)(3)(3+) ions with DnPTP (log beta(3)(app) = 12.0 +/- 0.5) and DiPTP (log beta(3)(app) = 14.0 +/- 0.6) in methanol/water (1:1 v/v) solutions under pH range 2.8-4.6 and, second, a mechanism whereby alkyl moieties contribute to a self-assembling process leading to the formation of Eu(L)(3)(3+) ions. Other complexes such as Eu(L)(2)(3+) ions are only observed for DnPTP (log beta(2)(app) = 6.7 +/- 0.5) and DMTP (log beta(2)(app) = 6.3 +/- 0.1) and Eu(L)(3+) only for DMTP (log beta(1)(app) = 2.9 +/- 0.2). The log beta(n)(app) values for the Eu(L)(n)(3+) (n = 1-3) complexes were determined at pH 2.8. Better insight was given in this study concerning the role of the hydrophobic exterior of the ligands for the design of a new range of extracting agents.  相似文献   

8.
Metal-mediated base pairing with artificial ligand-bearing nucleosides allows site-selective metal incorporation inside DNA duplexes. In particular, this strategy has provided a general way of discrete, heterogeneous metal arrays in a programmable manner. To increase the kind of metallo-building blocks, we have newly synthesized two artificial nucleosides which have an O, S-donor ligand as the nucleobase moiety, mercaptopyridone ( M) and hydroxypyridinethione ( S). These nucleosides were found to efficiently form metal-mediated base pairs with soft transition metal ions such as Pd (2+) and Pt (2+).  相似文献   

9.
Wang Y  Yi L  Yang X  Ding B  Cheng P  Liao DZ  Yan SP 《Inorganic chemistry》2006,45(15):5822-5829
The self-assembly of Ag(I) ions with 3,5-dimethyl-4-amino-1,2,4-triazole (L1) and 4-salicylideneamino-1,2,4-triazole (L2) gave two novel complexes, [Ag4(mu2-L1)6][Ag4(mu2-L1)6(CH3CN)2](ClO4)8.2H2O (1) and [Ag4(mu2-L2)6(CH3CN)2](AsF6)4.2H2O (2), both of which contain tetranuclearic clusters constructed via Ag(I) ions and six N1,N2-bridged triazoles with a Ag4N12 core. When 4-(6-amino-2-pyridyl)-1,2,4-triazole (L3) was employed, {[Ag4(mu2-L3)4(mu3-L3)2](CF3SO3)4.H2O}n (3), {[Ag4(mu2-L3)4(mu3-L3)2](ClO4)4}n (4), and {[Ag4(mu2-L3)2(mu3-L3)4](PF6)4.CH3CN.0.75H2O}n (5) were isolated. 3 and 4 are 1D polymers, while 5 is a 2D polymer. 1D and 2D coordination polymers are constructed via the self-assembly of Ag4N12 cores as secondary building units (SBUs). The connection of these SBUs can be represented as a ladderlike structure for 1D polymers and a 4.8(2) net for 2D polymers. Electrospray ionization mass spectrometry measurements and NMR (1H and 13C) studies demonstrate that the tetranuclear SBU retains its integrity and the coordination polymers decompose into the tetranuclear Ag4N12 core in solution. 2 exhibits blue emission in the solid state and green emission in solution at ambient temperature. Strong blue fluorescence for complexes 3-5 in the solid state can be assigned to the intraligand fluorescent emission.  相似文献   

10.
Agata Bia?ońska 《Tetrahedron》2008,64(41):9771-9779
1-(3-Bromopropyl)tetrazole, 2-(3-bromopropyl)tetrazole, 1-(4-bromobutyl)tetrazole, and 2-(4-bromobutyl)tetrazole were synthesized with the aim to prepare flexible bitopic ligands contaning 1- or 2-substituted tetrazole ring linked through 1,3-propylene or 1,4-butylene spacer with pyridylazole or azole unit. Twenty-six novel ligands i.e., α-(pyridylazolyl)-ω-(tetrazolyl)alkanes, α-(tetrazolyl)-ω-(1,2,3-triazolyl)alkanes, and α-(tetrazol-1-yl)-ω-(tetrazol-2-yl)alkanes were prepared by an alkylation of sodium salts of 5-(2-pyridyl)tetrazole, 3-(2-pyridyl)-1,2,4-triazole, 3-(2-pyridyl)pyrazole, 1,2,3-triazole, and 1,2,3,4-tetrazole with N-(ω-bromoalkyl)tetrazoles. An alkylation of 5-(2-pyridyl)tetrazole, 1,2,3,4-tetrazole, and 1,2,3-triazole afforded both N1- and N2-regioisomer whereas in the case of 3-(2-pyridyl)-1,2,4-triazole and 3-(2-pyridyl)pyrazole only N1 isomers were isolated. The positions of alkylation were confirmed by X-ray diffraction studies of 1-(5-(2-pyridyl)tetrazol-2-yl)-4-(tetrazol-1-yl)butane, 1-(3-(2-pyridyl)-1,2,4-triazol-1-yl)-4-(tetrazol-2-yl)butane, 1-(3-(2-pyridyl)pyrazol-1-yl)-4-(tetrazol-1-yl)butane, and 1-(tetrazol-1-yl)-4-(1,2,3-triazol-1-yl)butane. Preliminary investigations of magnetic properties of iron(II) complex with 1-(3-(2-pyridyl)-1,2,4-triazol-1-yl)-4-(tetrazol-1-yl)butane revealed that obtained product exhibit thermally induced spin transition accompanied by the thermochromic effect.  相似文献   

11.
The formation of complexes among the Curcumin, Fe(III) and Fe(II) was studied in aqueous media within the 5-11 pH range by means of UV-Vis spectrophotometry and cyclic voltammetry. When the reaction between the Curcumin and the ions present in basic media took place, the resulting spectra of the systems Curcumin-Fe(III) and Curcumin-Fe(II) presented a similar behaviour. The cyclic voltammograms in basic media indicated that a chemical reaction has taken place between the Curcumin and Fe(III) before that of the formation of complexes. Data processing with SQUAD permitted to calculate the formation constants of the complexes Curcumin-Fe(III), corresponding to the species FeCur (lob beta110 = 22.25 +/- 0.03) and FeCur(OH)- (log beta111 = 12.14 +/- 0.03), while for the complexes Curcumin-Fe(II) the corresponding formation constants of the species FeCur- (log beta110 = 9.20 +/- 0.04), FeHCur (log beta111 = 19.76 +/- 0.03), FeH2Cur+ (log beta112 = 28.11 +/- 0.02).  相似文献   

12.
Zhai QG  Wu XY  Chen SM  Zhao ZG  Lu CZ 《Inorganic chemistry》2007,46(12):5046-5058
Eight members of the Ag/1,2,4-triazole/polyoxometalates (POMs) hybrid supramolecular family, namely, [Ag4(dmtrz)4][Mo8O26] (dmtrz=3,5-dimethyl-1,2,4-triazole, 1), [Ag6(3atrz)6][PMo12O40]2.H2O (3atrz=3-amino-1,2,4-triazole, 2), [Ag2(3atrz)2]2[HPMoVI10MoV2O40] (3), [Ag2(dmtrz)2]2[HPMoVI10MoV2O40] (4), [Ag2(trz)2]2[Mo8O26] (trz=1,2,4-triazole, 5), [Ag2(3atrz)2][Ag2(3atrz)2(Mo8O26)] (6), [Ag4(4atrz)2Cl][Ag(Mo8O26)] (4atrz=4-amino-1,2,4-triazole, 7), and [Ag5(trz)4]2[Ag2(Mo8O26)].4H2O (8), were synthesized through hydrothermal reactions of 1,2,4-triazole or its derivatives with appropriate silver salts and molybdates. Crystal structure analysis reveals that the POM-dependent Ag-1,2,4-triazolate units in these hybrid compounds form a novel tetranuclear cluster (1), a unique double calix[3]arene-shaped hexamer (2), zigzag chains (5 and 6), helix chains (3, 4, and 8), and an interesting looped chain (7). A series of hydrogen bonding-based supramolecular assemblies varying among the 0-D+0-D (1 and 2), 0-D+1-D (3 and 4), 1-D+1-D (5 and 7), and 1-D+2-D (6) modes between the organomatic cations and POM anions were observed in these structures. Moreover, the inorganic chain [Ag(Mo8O26)]n3n- in 7 constructed by the building block [Mo8O26]4- linked only via single Ag+ ion is unprecedented. Compound 8 is the first high-dimensional framework constructed from the [Ag2(Mo8O26)]n2n- rod-shaped subunits. These hybrid supramolecular compounds present interesting photochemical properties. The spectroscopic experiments show that they not only are potential semiconductor materials but also have interesting photoluminescence phenomena, including O-->Mo [LMCT] and intraligand [pi-pi*] emissions generated by internal heavy metal effect.  相似文献   

13.
Metal atoms with a closed-shell electronic structure and positive charge as for example the Au(I), Pt(II), Ag(I), Tl(I) or Hg(II) atoms do not in some compounds repel each other due to the so-called metallophilic attraction (P. Pyykk?, Chem. Rev., 1997, 97, 597-636). Here we highlight the role of the Hg(II)Hg(II) metallophilic attraction between the consecutive metal-mediated mismatched base pairs of nucleic acids. Usually, the base stacking dominates the non-covalent interactions between steps of native nucleic acids. In the presence of metal-mediated base pairs these non-covalent interactions are enriched by the metal-base interactions and the metallophilic attraction. The two interactions arising due to the metal linkage of the mismatches were found in this study to have a stabilizing effect on nucleic acid structure. The calculated data are consistent with recent experimental observations. The stabilization due to the metallophilic attraction seems to be a generally important concept for the nucleic acids containing heavy metals with short contacts.  相似文献   

14.
1-Substituted 3-nitro-5-(N-azolyl)-1,2,4-triazoles mixed with 1-substituted 3-nitro-1,2,4-triazol-5-ones are obtained in the reaction of 1-substituted 3,5-dinitro-1,2,4-triazoles with anions of heterocyclic NH acids (1,2,4-triazole, 1,2,3-triazole, pyrazole, benzotriazole, benzimidazole, and indazole derivatives). 1-Methyl-3-nitro-5-amino-1,2,4-triazole is formed instead of the expected 5-tetrazolyl derivative in the reaction of 1-methyl-3,5-dinitro-1,2,4-triazole with tetrazole in alkaline media. See [1] for communication 25. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 257–261, February, 1980.  相似文献   

15.
The electron impact mass spectra of 6-methyltetrazolo[1,5-c]pyrimidin-5(6H)-one, its 7- and 8-methyl derivatives, three 8-halo derivatives and two related nucleosides are reported. On the basis of the high-resolution data and detected metastable ions, the fragmentation routes of their molecular ions are proposed. Coexistence of the tautomeric forms of the title compounds of cyclic (tetrazole) or linear (azide) structure can be suggested owing to the fragmentation pathways identified for the bases. Decomposition of the related nucleosides lies in the breaking of nucleoside bonds to produce the appropriate base and sugar fragments.  相似文献   

16.
N-Unsubstituted azoles (1,2,4-triazole, 3-amino-1,2,4-triazole) and 5-R-tetrazoles (R = H, CH3, C2H5, C4H9, CH = CH2, C6H5, p-CH3C6H4, NH2) form water-soluble polymeric complexes in systems containing certain transition metal salts. The data obtained and the results of MP2/6-31G* * calculations of the electronic structures of 5-R-tetrazolate anions show that the ability of azoles for formation of polymeric complexes with transition metal ions is mostly determined by the acid-base properties of azoles. The geometric structure of a polymeric chain with the Co2+ ion having the coordination number 6 and the 5-methyltetrazolate anion being a bridging ligand was examined at the STO-3G level. It was shown that the coordination by the 2- and 3-nitrogen atoms of the tetrazole ring is most favored by energy.  相似文献   

17.
5-(Octa-1,7-diynyl)-2'-deoxyuridine was converted into the furano-dU derivative 7 by copper-catalyzed cyclization; the pyrolodC-derivative 3 was formed upon ammonolysis. The bicyclic nucleosides 3 and 7 as well as the corresponding non-cyclic precursors 4 and 6 all containing terminal C[triple bond]C bonds were conjugated with the non-fluorescent 3-azido-7-hydroxycoumarin 5 employing the copper(I)-catalyzed Huisgen-Sharpless-Meldal cycloaddition "click reaction". Strongly fluorescent 1H-1,2,3-triazole conjugates (30-33) are formed incorporating two fluorescent reporters-the pyrdC nucleoside and the coumarin moiety. Oligonucleotides incorporating 6-alkynyl and 6-alkyl 7H-pyrrolo[2,3-d]pyrimidin-2(3H)-one nucleosides (3 and 2f) have been prepared by solid-phase synthesis using the phosphoramidite building blocks 10 and 13 ; the pyrrolo-dC oligonucleotides are formed during ammonia treatment. The duplex stability of oligonucleotides containing 3 and related derivatives was studied. Oligonucleotides with terminal triple bonded nucleosides such as 3 are more stabilizing than those lacking a side chain with terminal unsaturation; open-chain derivatives (4) are even more efficient. The click reaction was also performed on oligonucleotides containing the pyrdC-derivative and the fluorescence properties of nucleosides, oligonucleotides and their coumarin conjugates were studied.  相似文献   

18.
The reactions of 1,4-dimethoxybenzene with 4-nitropyrazole, 3,4-dinitro-5-methylpyrazole, 1,2,4-triazole, 3-nitro-1,2,4-triazole, and tetrazole were studied during undivided amperostatic electrolysis on a Pt electrode in MeCN, CH2Cl2, and MeOH. The main reaction products were 2-azolyl-1,4-dimethoxybenzenes and (or) 1,4-diazolyl-1,4-dimethoxycyclohexa-2,5-dienes. In all cases except 1,2,4-triazole, N-arylation occurs only in the presence of the Alk4N+ salts of azoles or 2,4,6-trimethylpyridine as a base. The mechanism of the reactions is discussed.  相似文献   

19.
The acid-catalyzed fusion of methyl 1,2,3-triazole-4-carboxylate, 4-cyano-1,2,3-triazole, and 4-nitro-1,2,3-triazole with an acylated ribofuranose provided the corresponding 2-β-D-ribo-furanosyl-4-substituted-1,2,3-triazoles along with the isomeric 1-β-D-ribofuranosyl-4-substituted-1,2,3-triazoles. The structures of these nucleosides were assigned on the basis of their nmr spectra. The synthesis of 2-β-D-ribofuranosyl-1,2,3-triazole-4-carboxamide from both the corresponding methyl ester and cyano nucleosides is described. The cyano nucleosides were utilized to prepare 2-β-D-ribofuranosyl-1,2,3-triazole-4-thiocarboxa?ide and 1-β-D-ribofuranosyl-1,2,3-triazole-4-thiocarboxamide. Reduction of the 4-nitro-1,2,3-triazole nucleosides provided 4-amino-2-β-D-ribofuranosyl-1,2,3-triazole and the isomeric 4-amino-1-β-D-ribofuranosyl-1,2,3-triazole. The acid-catalyzed fusion procedure with 1,2,3-triazole afforded 1-β-D-ribofuranosyl-1,2,3-triazole and 2-β-D-ribofuranosyl-1,2,3-triazole.  相似文献   

20.
1-β-D-Ribofuranosyl- 21 , 1-(2-deoxy-β-D-erytftro-pento fur anosyl)- 27 and 1-β-D-arabinofuranosyl- 29 derivatives of 1,2,4-triazole-3-sulfonamide ( 19 ) have been prepared. Glycosylation of the silylated 19 with 1,2,3,5-tetra-0-acetyl-β-D-ribofuranose ( 5 ) in the presence of trimethylsilyl triflate gave the corresponding blocked nucleoside ( 20 ), which on ammonolysis afforded 1-β-D-ribofuranosyl-1,2,4-triazole-3-sulfonamide ( 21 ). Stereospecific glycosylation of the sodium salt of 19 with either 1-chloro-2-deoxy-3,5-di-O-p-toluoyl-α-D-erythro-pentofuranose ( 22 ) or 1-chloro-2,3,5-tri-0-benzyl-α-D-arabinofuranose ( 23 ) provided the corresponding protected nucleosides 26 and 28. Deprotection of 26 and 28 furnished 1-(2-deoxy-β-D-erythro-pentofuranosyl)-1,2,4-triazole-3-sulfonamide ( 27 ) and 1-β-D-arabinofuranosyl-1,2,4-triazole-3-sulfonamide ( 29 ), respectively. 2-0-D-Ribofuranosyl-1,2,4-triazole-3(4H)-thione ( 7 ) and 4-β-D-ribofuranosyl-1,2,4-triazole-3(2H)-thione ( 9 ) were also prepared utilizing either an acid catalyzed fusion of 1,2,4-triazole-3(1H,2H)-thione ( 4 ) with 5 , the reaction of 5 with silylated 4 in the presence of trimethylsilyl triflate, or by ring closure of 4-(2,3,5-tri-0-benzoyl-β-D-ribofuranosyl)thiosemicarbazide ( 10 ) with mixed anhydride and subsequent deacylation. The synthesis of 1-β-D-ribofuranosyl-3-benzylthio-1,2,4-triazole ( 15 ) has also been accomplished by the silylation procedure employing 3-benzylthio-1,2,4-triazole ( 13 ) and 5 to give 1-(2,3,5-tri-0-acetyl-β-D-ribofuranosyl)-3-benzylthio-1,2,4-triazole ( 14 ). Deacetylation of 14 furnished 15 . The structural assignments of 7, 14 and 21 were made by single-crystal X-ray diffraction analysis and their hydrogen bonding characteristics have been studied. The sulfonamido-1,2,4-triazole nucleosides are devoid of any significant antiviral or antitumor activity in cell culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号