首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assuming dipole-dipole interaction as the dominant relaxation mechanism of protons of water molecules adsorbed onto macromolecule (biopolymer) surfaces we have been able to model the dependences of relaxation rates on temperature and frequency. For adsorbed water molecules the correlation times are of the order of 10(-5)s, for which the dispersion region of spin-lattice relaxation rates in the rotating frame R(1)(ρ)=1/T(1)(ρ) appears over a range of easily accessible B(1) values. Measurements of T(1)(ρ) at constant temperature and different B(1) values then give the "dispersion profiles" for biopolymers. Fitting a theoretical relaxation model to these profiles allows for the estimation of correlation times. This way of obtaining the correlation time is easier and faster than approaches involving measurements of the temperature dependence of R(1)=1/T(1). The T(1)(ρ) dispersion approach, as a tool for molecular dynamics study, has been demonstrated for several hydrated biopolymer systems including crystalline cellulose, starch of different origins (potato, corn, oat, wheat), paper (modern, old) and lyophilized proteins (albumin, lysozyme).  相似文献   

2.
The methyl protons of creatine in skeletal muscle exhibit a strong off-resonance magnetization transfer effect. The mechanism of this process is unknown. We previously hypothesized that the exchangeable amide/amino protons of creatine might be involved. To test this the characteristics of the creatine magnetization transfer effect were investigated in excised rat hindleg skeletal muscle that was equilibrated in either H2O or D2O solutions containing creatine. The efficiency of off-resonance magnetization transfer to the protons of mobile creatine in excised muscle was similar to that previously reported in intact muscle in vivo. Equilibrating the isolated muscle in D2O solution had no effect on the magnetic coupling to the immobile protons. It is concluded that exchangeable protons play a negligible role in the magnetic coupling of creatine methyl protons in muscle.  相似文献   

3.
The goal is to develop an imaging method where contrast reflects amide-water magnetization exchange, with minimal signal contributions from other sources. Conventional chemical exchange saturation transfer (CEST) imaging of amides (often called amide proton transfer, or APT, and quantified by the metric MTRasym) is confounded by several factors unrelated to amides, such as aliphatic protons, water relaxation, and macromolecular magnetization transfer. In this work, we examined the effects of combining our previous chemical exchange rotation (CERT) approach with the non-linear AREX method while using different duty cycles (DC) for the label and reference scans. The dependencies of this approach, named AREXdouble,vdc, on tissue parameters, including T1, T2, semi-solid component concentration (fm), relayed nuclear Overhauser enhancement (rNOE), and nearby amines, were studied through numerical simulations and control sample experiments at 9.4 T and 1 μT irradiation. Simulations and experiments show that AREXdouble,vdc is sensitive to amide-water exchange effects, but is relatively insensitive to T1, T2, fm, nearby amine, and distant aliphatic protons, while the conventional metric MTRasym, as well as several other APT imaging methods, are significantly affected by at least some of these confounding factors.  相似文献   

4.
Trehalose preserves lipid bilayers during dehydration and rehydration by replacing water to form hydrogen bonds between its own OH groups and lipid headgroups. We compare the lipid conformation and dynamics between trehalose-protected lyophilized membranes and hydrated membranes, to assess the suitability of the trehalose-containing membrane as a matrix for membrane protein structure determination. (31)P spectra indicate that the lipid headgroup of trehalose-protected dry POPC membrane (TRE-POPC) have an effective phase transition temperature that is approximately 50K higher than that of the hydrated POPC membrane. In contrast, the acyl chains have similar transition temperatures in the two membranes. Intramolecular lipid (13)C'-(31)P distances are the same in TRE-POPC and crystalline POPC, indicating that the lipid headgroup and glycerol backbone conformation is unaffected by trehalose incorporation. Intermolecular (13)C-(31)P distances between a membrane peptide and the lipid headgroups are 10% longer in the hydrated membrane at 226 K than in the trehalose-protected dry membrane at 253 K. This is attributed to residual motions in the hydrated membrane, manifested by the reduced (31)P chemical shift anisotropy, even at the low temperature of 226 K. Thus, trehalose lyoprotection facilitates the study of membrane protein structure by allowing experiments to be conducted at higher temperatures than possible with the hydrated membranes.  相似文献   

5.
A sensitivity-enhanced 1D (1)H spin diffusion experiment, CHH, for determining membrane protein topology is introduced. By transferring the magnetization of the labeled protein (13)C to lipid and water protons for detection, the CHH experiment reduces the time of the original 2D (13)C-detected experiment by two orders of magnitude. The sensitivity enhancement results from (1)H detection and the elimination of the (13)C dimension. Consideration of the spin statistics of the membrane sample indicates that the CHH sensitivity depends on the (13)C labeling level and the number of protein protons relative to the mobile protons. 5-35% of the theoretical sensitivity was achieved on two extensively (13)C labeled proteins. The experimental uncertainties arise from incomplete suppression of the equilibrium (1)H magnetization and the magnetization of lipid protons directly bonded to natural-abundance carbons. The technique, demonstrated on colicin Ia channel domain, confirms the presence of a transmembrane domain and the predominance of surface-bound helices.  相似文献   

6.
The 31P magnetization transfer effects among nuclear magnetic resonances (NMRs) of phosphocreatine (PCr), γ-adenosine-5'-triphosphate (γ-ATP) and inorganic phosphate (Pi) have been attributed to the chemical exchange reactions among PCr, ATP and Pi catalyzed by creatine kinase (CK) and ATPase enzymes and, therefore, are commonly applied in situ to measure chemical exchange fluxes involving two chemically coupled CK and ATPase reactions (i.e., PCr↔ATP↔Pi) by selectively saturating γ-ATP resonance. Besides the expected reductions in the Pi and PCr NMR signals upon saturating γ-ATP resonance, one particularly interesting phenomenon showing decreases in α-ATP and β-ATP signals was also observed. The underlying mechanism was investigated and identified via saturating NMR of β-ATP in the present study. The unique relayed magnetization transfer effects through spin diffusion were observed in the rat brain using in vivo 31P magnetic resonance spectroscopy.  相似文献   

7.
We present a novel approach to the investigation of rapid (>2s(-1)) NH exchange rates in proteins, based on residue-specific diffusion measurements. (1)H, (15)N-DOSY-HSQC spectra are recorded in order to observe resolved amide proton signals for most residues of the protein. Human ubiquitin was used to demonstrate the proposed method. Exchange rates are derived directly from the decay data of the diffusion experiment by applying a model deduced from the assumption of a two-site exchange with water and the "pure" diffusion coefficients of water and protein. The "pure" diffusion coefficient of the protein is determined in an experiment with selective excitation of the amide protons in order to suppress the influence of magnetization transfer from water to amide protons on the decay data. For rapidly exchanging residues a comparison of our results with the exchange rates obtained in a MEXICO experiment showed good agreement. Molecular dynamics (MD) and quantum mechanical calculations were performed to find molecular parameters correlating with the exchangeability of the NH protons. The RMS fluctuations of the amide protons, obtained from the MD simulations, together with the NH coupling constants provide a bilinear model which shows a good correlation with the experimental NH exchange rates.  相似文献   

8.
In this study 2H T2rho DQF NMR spectra of water in MCM-41 were measured. The T2rho double-quantum filtered (DQF) NMR signal is generated by applying a radio frequency (RF) field for various durations and then observed after a monitor RF pulse. It was found that the transfer between different quantum coherences by the couplings during long-duration RF fields (i.e., soft pulses) and that residual quadrupolar interaction dominates the signal decay. Knowledge of coherence transfer during long-RF pulses has special significance for the development of sophisticated multi-quantum NMR experiments especially multi-quantum MRI applications.  相似文献   

9.
A high resolution two-dimensional solid state NMR experiment is presented that correlates half-integer quadrupolar spins with protons. In this experiment the quadrupolar nuclei evolve during t1 under a split-t1, FAM-enhanced MQMAS pulse scheme. After each t1 period ending at the MQMAS echo position, single quantum magnetization is transferred, via a cross polarization process in the mixing time, from the quadrupolar nuclei to the protons. High-resolution proton signals are then detected in the t2 time domain during wPMLG5* homonuclear decoupling. The experiment has been demonstrated on a powder sample of sodium citrate and 23Na-1H 2D correlation spectra have been obtained. From the HETCOR spectra and the regular MQMAS spectrum, the three crystallographically inequivalent Na+ sites in the asymmetric unit were assigned. This MQMAS-wPMLG HETCOR pulse sequence can be used for spectral editing of half-integer quadrupolar nuclei coupled to protons.  相似文献   

10.
Off-resonance rotating frame technique offers a novel tool to explore the dynamics of paramagnetic agents at high magnetic fields (B0 > 3T). Based on the effect of paramagnetic relaxation enhancement in the off-resonance rotating frame, a new method is described here for determining the dynamics of paramagnetic ion chelates from the residual z-magnetizations of water protons. In this method, the dynamics of the chelates are identified by the difference magnetization profiles, which are the subtraction of the residual z-magnetization as a function of frequency offset obtained at two sets of RF amplitude omega(1) and pulse duration tau. The choices of omega(1) and tau are guided by a 2-D magnetization map that is created numerically by plotting the residual z-magnetization as a function of effective field angle theta and off-resonance pulse duration tau. From the region of magnetization map that is the most sensitive to the alteration of the paramagnetic relaxation enhancement efficiency R(1rho)/R1, the ratio of the off-resonance rotating frame relaxation rate constant R(1rho) verse the laboratory frame relaxation rate constant R(1), three types of difference magnetization profiles can be generated. The magnetization map and the difference magnetization profiles are correlated with the rotational correlation time tauR of Gd-DTPA through numerical simulations, and further validated by the experimental data for a series of macromolecule conjugated Gd-DTPA in aqueous solutions. Effects of hydration water number q, diffusion coefficient D, magnetic field strength B0 and multiple rotational correlation times are explored with the simulations of the magnetization map. This method not only provides a simple and reliable approach to determine the dynamics of paramagnetic labeling of molecular/cellular events at high magnetic fields, but also a new strategy for spectral editing in NMR/MRI based on the dynamics of paramagnetic labeling in vivo.  相似文献   

11.
Analysis of spin-exchange build-up curves obtained by measurement of 2D 1H CRAMPS spectra of alpha-glycine was performed to evaluate the rate of 1H-1H spin-exchange process with respect to the influence of variation in internal molecular motion. Differences in local motions significantly affect spin-exchange constants even in highly rigid organic solids with virtually uniform motion behavior. The polarization transfer between nonequivalent alpha-protons is described by the spin-exchange constant D=0.77 nm(2)ms(-1), while the polarization transfer involving spin exchange between alphaH and NH(3)(+) protons is characterized by D=0.24-0.21 nm(2)ms(-1). This significant decrease corresponds to rotation of hydrogen-bonded amino groups. Neglecting this variation in local spin-exchange constants the resulting calculated 1H-1H distance can be overestimated by up to 100%. Complications following from relayed and back polarization transfer involving the nearest spins within one functional group (e.g., CH(2) and/or NH(3)(+)) and intermolecular spin exchange are discussed. It was shown that 2H quadrupolar splitting determined for selected sites directly correlates with the experimentally observed differences in spin-exchange coefficients. It is also demonstrated that a medium level quantum chemical calculation of molecular dynamics provides relevant data that can be used to estimate differences in molecular motions.  相似文献   

12.
The simple method for measuring the rotational correlation time of paramagnetic ion chelates via off-resonance rotating frame technique is challenged in vivo by the magnetization transfer effect. A theoretical model for the spin relaxation of water protons in the presence of paramagnetic ion chelates and magnetization transfer effect is described. This model considers the competitive relaxations of water protons by the paramagnetic relaxation pathway and the magnetization transfer pathway. The influence of magnetization transfer on the total residual z-magnetization has been quantitatively evaluated in the context of the magnetization map and various difference magnetization profiles for the macromolecule conjugated Gd-DTPA in cross-linked protein gels. The numerical simulations and experimental validations confirm that the rotational correlation time for the paramagnetic ion chelates can be measured even in the presence of strong magnetization transfer. This spin relaxation model also provides novel approaches to enhance the detection sensitivity for paramagnetic labeling by suppressing the spin relaxations caused by the magnetization transfer. The inclusion of the magnetization transfer effect allows us to use the magnetization map as a simulation tool to design efficient paramagnetic labeling targeting at specific tissues, to design experiments running at low RF power depositions, and to optimize the sensitivity for detecting paramagnetic labeling. Thus, the presented method will be a very useful tool for the in vivo applications such as molecular imaging via paramagnetic labeling.  相似文献   

13.
In chemical exchange dependent saturation transfer imaging experiments, exchangeable solute protons are saturated and the transfer of saturation to water is subsequently detected. When the applied irradiation power is comparable to the resonance frequency difference between the water protons and saturated solute protons, the proton transfer (PT) efficiency is reduced due to concomitant direct saturation effects. In this study, the PT process is modeled using a two-pool system. An empirical general proton transfer ratio (PTR) equation for arbitrary RF irradiation power is derived, and its optimal power to maximize the PTR is analyzed. The results are confirmed experimentally on 4.7 T using a poly-L-lysine solution. The theory provides a useful tool for optimizing the irradiation power of the PT sequences in the presence of direct saturation effects.  相似文献   

14.
We present here the first 3D homonuclear/heteronuclear correlation experiment applied to quadrupolar nuclei and making use of the sole scalar J-coupling. This experiment, based on the 2D-Homonuclear-Heteronuclear Single Quantum Correlation (H-HSQC) experiment, uses a relayed transfer from the (27)Al central transition to neighbouring (31)P spins and to the central transition of a second (27)Al. It confirms the correlation map characterizing the two (27)Al and the (31)P NMR signatures of (27)Al-O-(31)P-O-(27)Al chemically bonded molecular motifs.  相似文献   

15.
16.
Magnetization transfer contrast imaging is an MR technique that capitalizes on interactions between the protons of mobile and macromolecularly bound water molecules. Studies to date, conducted primarily on 4.7 T and 1.5 T MR systems, have yielded results unique from conventional T1- and T2-weighted imaging studies. In this study, performed on a 0.1 T device, a section of lower leg was imaged in 20 normal human subjects and one patient with muscular dystrophy, using both a standard 500/22 gradient-echo sequence and a 500/22 gradient-echo sequence combined with off-resonance radio frequency irradiation designed to elicit magnetization transfer contrast. Results of the two techniques were compared. Our findings suggest that magnetization transfer contrast imaging is feasible at 0.1 T, and that this technique allows reproducible tissue characterization and improves contrast between certain tissues.  相似文献   

17.
Three-dimensional image-selected in vivo spectroscopy (ISIS) was combined with phase-cycled 1H–15N heteronuclear multiple-quantum coherence (HMQC) transfer NMR for localized selective observation of protons J-coupled to 15N in phantoms and in vivo. The ISIS–HMQC sequence, supplemented by jump–return water suppression, permitted localized selective observation of 2–5 μmol of [15Nindole]tryptophan, a precursor of the neurotransmitter serotonin, through the 15N-coupled proton in 20–40 min of acquisition in vitro at 4.7 T. In vivo, the amide proton of [5-15N]glutamine was selectively observed in the brain of spontaneously breathing 15NH4+-infused rats, using a volume probe with homogeneous 1H and 15N fields. Signal recovery after three-dimensional localization was 72–82% in phantoms and 59 ± 4% in vivo. The result demonstrates that localized selective observation of 15N-coupled protons, with complete cancellation of all other protons except water, can be achieved in spontaneously breathing animals by the ISIS–HMQC sequence. This sequence performs both volume selection and heteronuclear editing through an addition/subtraction scheme and predicts the highest intrinsic sensitivity for detection of 15N-coupled protons in the selected volume. The advantages and limitations of this method for in vivo application are compared to those of other localized editing techniques currently in use for non-exchanging protons.  相似文献   

18.
Relaxation rates in the rotating frame (R1rho) and spin-spin relaxation rates (R2) were measured in articular cartilage at various orientations of cartilage layer to the static magnetic field (B0), at various spin locking field strengths and at two different static magnetic field strengths. It was found that R1rho in the deep radial zone depended on the orientation of specimens in the magnet and decreased with increasing the spin locking field strength. In contrast, R1rho values in the transitional zone were nearly independent of the specimen orientation and the spin locking field strength. Measurements of the same specimens at 2.95 and 7.05 T showed an increase of R1rho and most R2 values with increasing B0. The inverse B0 dependence of some R2 values was probably due to a multicomponent character of the transverse magnetization decay. The experiments revealed that the dominant T1rho and T2 relaxation mechanism at B0 < or = 3 T is a dipolar interaction due to slow anisotropic motion of water molecules in the collagen matrix. On average, the contribution of scalar relaxation due to rapid proton exchange in femoral head cartilage at 2.95 T is about 6% or less of the total R1rho at the spin locking field of 1000 Hz.  相似文献   

19.
A new two-dimensional pulse sequence for T2* measurement of protons directly coupled to 13C spins is proposed. The sequence measures the tranverse relaxation time of heteronuclear proton single-quantum coherence under conditions of free precession and is therefore well suited to evaluate relaxation losses of proton magnetization during preparation delays of heteronuclear pulse experiments in analytical NMR. The relevant part of the pulse sequence can be inserted as a “building block” into any direct or inverse detecting H,C correlation pulse sequence if proton spin–spin relaxation is to be investigated. In this contribution, the building block is inserted into a HETCOR as well as into a HMQC pulse sequence. Experimental results for the HETCOR-based sequence are given.  相似文献   

20.
The presence of two independent methylamine species in microporous aluminophosphate IST-1 (|(CH(3)NH(2))(4)(CH(3)NH(+)(3))(4)(OH(-))(4)|[Al(12)P(12)O(48)]) has been shown previously by synchrotron powder X-ray diffraction. One of these species, [N(1)-C(1)], links to a six-coordinated framework Al-atom [Al(1)], while the other methylamine [N(2)-C(2)] is protonated and hydrogen-bonded to three O-atoms [O(1), O(2) and O(12)]. We revisit the structure of IST-1 and report the complete assignment of the (1)H NMR spectra by combining X-ray data and high-resolution heteronuclear/homonuclear solid-state NMR techniques based on frequency-switched Lee-Goldburg homonuclear decoupling and (31)P-(31)P homonuclear recoupling. Careful analysis of the 2D (1)H-X homonuclear correlation (X=(1)H) and 2D heteronuclear correlation (X=(13)C, (31)P and (27)Al) spectra allowed the distinction of both methylamine species and the assignment of all (31)P and (13)C resonances. For the first time at a relatively high (9.4 T) magnetic field, symmetric doublet patterns have been observed in the (13)C spectra, caused by the influence of the (14)N second-order quadrupolar interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号