首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The corrosion behaviours of austenitic stainless steels were investigated by electrochemical methods under plastic deformation with constant strain in the naturally aerated 0.5 M H2SO4 + 0.2 M KCl solution at room temperature. The work addresses the influence of plastic deformation and molybdenum element on the corrosion resistance of austenitic stainless steels in the test solution. Electrochemical impedance spectroscopy presents the decreasing charge transfer resistance (Rt) and polarization resistance (Rp) values with the immersion time for AISI 304 stainless steel under constant strain deformation, and the increasing Rt and Rp values with the immersion time for AISI 316 stainless steel. The analysis of the chemical composition of the corrosion products was carried out by XPS. Molybdenum addition in AISI 316 stainless steel affects significantly the corrosion resistance because of its high ability to form Mo (VI) and MoCl5 insoluble compounds in acid medium. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
以滑移-溶解-再钝化模型为基础,推导出应力腐蚀裂纹扩展速率与裂尖应变速率和电位之间的理论公式.计算表明,在裂纹扩展速率与裂尖应变速率的关系曲线中有两个特征区域.裂纹扩展速率在区域I随裂尖应变速率增加而增大,而在区域II不随裂尖应变速率的改变而变化.用慢应变速率拉伸技术(SSRT)测量了304L不锈钢的裂纹增长速率.当电位控制在区域II的阳极区时,理论计算的裂纹扩展速率与实验得到的结果比较吻合.  相似文献   

3.
304L is an austenitic stainless steel with very low carbon content, and is served as the application to the oxidizing media, however, its corrosion resistance is not satisfactory in reducing media. For example, the pitting corrosion occurred on 304L stainless steel tube, which had been mounted for one year, somewhere at the power station in die seashore of China. For this reason we have studied the corrosion behavior of 304L in some media and invented a novel surface treatment technique of stainless steel for extremely improving the corrosion resistance of 304L. The characteristics of the modified passive film on the steel were examined in this paper, and the corrosion resistance of treated 304L stainless steel was tested in our laboratory and the testing ground. The results are satisfactory.  相似文献   

4.
Neutron diffraction is a well-established non-destructive method for the measurement of residual stress deep inside materials. This paper gives a short overview of the use of neutrons for materials research and measurement techniques. Neutron diffraction has been applied in determining residual stresses in metal matrix composites. Measurement and prediction of residual stress for plastic deformation are presented. More recently, the neutron diffraction technique has also been applied for the determination of plastic strain which results from microstructural defects and leads to peak broadening. Influence of the shot penning treatment on austenitic steel is presented.  相似文献   

5.
Poly(o-toluidine) (POT) coatings were electrochemically synthesized on 304 stainless steel using cyclic voltammetric method. These coatings were characterized by Fourier transform infrared spectroscopy, UV–vis absorption spectroscopy, and cyclic voltammetry. The corrosion performance of POT coating in aqueous 3 wt% sodium chloride was assessed by the electrochemical techniques such as open circuit potential measurements, potentiodynamic polarization technique, cyclic potentiodynamic polarization measurements, and electrochemical impedance spectroscopy. The results reveal that POT coating on 304 stainless steel prevents general and localized corrosion, and reduces the exchange current density almost by a factor of 45 than bare 304 stainless steel.  相似文献   

6.
Electrochemical impedance spectroscopy allows the examination of corrosion susceptibility and resistance for different construction materials, in particular the determination of the properties of their passive films. This technique makes possible the analysis of electrochemical processes in time domain, including rapid phenomena such as changes in the properties of passive films, but it has never been used for passive layer cracking examination. In many cases, fracture of the passive film under tensile stresses leads to stress corrosion cracking. Therefore, investigations of passive layer cracking on austenitic stainless steels under tensile stresses facilitate the understanding of the mechanism of stress corrosion cracking in these common engineering materials. The effect of static tensile stresses on the passive film cracking behaviour of type 304L stainless steel immersed in 0.5 M NaCl solution at room temperature has been investigated. This paper presents the impedance spectra obtained for 304L stainless steel samples at different potential values.Contribution to the 3rd Baltic Conference on Electrochemistry, Gdansk-Sobieszewo, Poland, 23–26 April 2003Dedicated to the memory of Harry B. Mark, Jr. (28 February 1934–3 March 2003)  相似文献   

7.

Predicting the electrical corrosion potential (ECP) of type 304 stainless steel, the structural material of recirculation pipes in fusion power plants, is important because the growth rate of intergranular stress corrosion crack (IGSCC) of 304 stainless steel is closely related to ECP. In this work, a new model has been developed, by modifying existing models, to calculate the ECP of recirculation pipes in future fusion power plant. The calculation results indicate that merely injecting hydrogen cannot reduce ECP below EIGSCC if the dose rate exceeds a threshold, other assisted water chemistry controlling method is necessary.

  相似文献   

8.
通过扫描微电极法研究敏化处理奥氏体不锈钢(304ss)的局部腐蚀行为,并结合传统电化学方法及光学显微镜进行测试观察. 结果表明,在10% FeCl3溶液未敏化处理(304ss-NS)或550 oC轻度敏化处理(304ss-S1)的不锈钢倾向于发生点腐蚀,而650 oC(304ss-S2)或750 oC(304ss-S3)深度敏化处理不锈钢则倾向于发生晶间腐蚀.  相似文献   

9.
张新生  许淳淳  胡钢 《电化学》2003,9(3):320-326
30 4不锈钢通过低温拉伸制得含有不同马氏体相变量的试样 ,由于冷加工将不可避免地导致位错密度大幅度增加 ,利用铁素体测量仪和透射电镜 (TEM )检测并分析 30 4不锈钢位错形态 .上述试样在 4 2 %MgCl2 沸腾溶液中用慢应变速率法 (SSRT) ,结合金相显微镜 ,扫描电子显微镜等表面分析手段 ,探讨了微观组织变化对 30 4不锈钢应力腐蚀的影响 .结果表明 :由于马氏体相和位错缺陷的交互作用 ,影响了 30 4不锈钢在沸腾MgCl2 溶液中应力腐蚀敏感性 ,且在不同变形量范围内 ,影响的主导因素不同  相似文献   

10.
The effect of thermal annealing of poly(3-octylthiophene) (P3OT) coatings on the corrosion inhibition of stainless steel in an NaCl solution was investigated. P3OT was synthesized by direct oxidation of the 3-octylthiophene monomer with ferric chloride (FeCl3) as oxidant. P3OT films were deposited by drop-casting technique onto 304 stainless steel electrode (304SS). 304SS coated with P3OT films were thermally annealed during 30 h at different temperatures (55°C, 80°C, and 100°C). The corrosion resistance of stainless steel coated with P3OT in 0.5 M NaCl aqueous solution at room temperature was investigated by using potentiodynamic polarization curves, linear polarization resistance, and electrochemical impedance spectroscopy. The results indicated that the thermal treatment at 80°C and 100°C of P3OT films improved the corrosion resistance of the stainless steel in NaCl solution; the speed of corrosion diminished in an order of magnitude with regard to the 304SS. In order to study the temperature effect in the morphology of the coatings before and after the corrosive environment and correlate it with corrosion protection, atomic force microscopy and scanning electron microscopy were used. Morphological study showed that when the films are heated, the grain size increased and a denser surface was obtained, which benefited the barrier properties of the film.  相似文献   

11.
模拟地热水中304不锈钢管和镀锌钢管的腐蚀与结垢   总被引:2,自引:0,他引:2  
采用扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)和电化学测试的方法研究了304不锈钢管和镀锌钢管在模拟地热水(我国中部平原地热水的环境条件)中的腐蚀与结垢行为.结果表明,不锈钢管的结垢产物为"针"状物,其组成主要为CaCO3和MgCO3;镀锌钢管的腐蚀与结垢产物为"球"状物和"针"状物,其组成主要为Zn(OH)2、ZnO和CaCO3;腐蚀产物与结垢产物在晶核的形成生长过程中往往存在相互作用,同时它们在基材表面的分布对镀锌钢管的进一步腐蚀产生一定的抑制作用.  相似文献   

12.
Pitting corrosion of stainless steels causes tremendous damage in terms of material loss and resulting accidents. Organic surfactants have been tried as pitting inhibitors but the understanding of the inhibition mechanisms is mainly speculative. In the present study the inhibition of the pitting corrosion of 304 stainless steel by N-lauroylsarcosine sodium salt (NLS) in 0.1 M NaCl solutions at neutral pH was studied using an approach that combines surface chemical techniques with electrochemical ones. It was found that NLS increases the pitting resistance of 304 stainless steel, with possible complete inhibition at high NLS concentration (30 mM). Adsorption of NLS on 304 stainless steel particles was directly measured. NLS adsorbs significantly on 304 stainless steel with maximum adsorption density close to bilayer coverage. Electrophoretic mobility data for 304 stainless steel particles show that the surface of 304 stainless steel is negative in NaCl solution at neutral pH. The adsorption of NLS makes the interfacial charge even more negative. The relationship between pitting inhibition and adsorption density of NLS suggests that NLS does not adsorb preferentially on the pit nucleation sites and complete inhibition requires that the whole surface be covered completely by NLS. The inhibition mechanism of NLS is proposed to be due mainly to the blocking effect of a negatively charged NLS adsorption layer. This study shows that in addition to the adsorption amount of surfactant, interfacial charge also plays an important role in pitting inhibition.  相似文献   

13.
曾传铭  罗亦旋  蔡文达 《电化学》2003,9(3):265-271
本研究主要探讨 2 2 %Cr双相不锈钢在含氯离子水溶液中之腐蚀疲劳裂缝成长行为 ,以及在慢应变速率拉伸试验过程中所发生的动态应变时效现象 .同时以 31 6L沃斯田体系不锈钢及4 30肥粒体系不锈钢作为比较 ,藉以探讨不同晶体结构对腐蚀疲劳及动态应变时效行为的影响 .实验结果显示 ,在 80℃ ,3.5wt%NaCl水溶液中 ,3种不锈钢并未发生应力腐蚀破裂 ,但其中 31 6L沃斯田体系不锈钢及 2 2 %Cr双相不锈钢却发生动态应变时效 ,且动态应变时效的发生与温度 ,应变速率及沃斯田体相的组织有关 .在NaCl水溶液中 ,采用预裂试片量测疲劳裂缝生长速率 ,其结果表明 ,4 30肥粒体系不锈钢之疲劳裂缝生长速率最快 ,而氢脆是加快裂缝生长速率的主因 ,就双相不锈钢而言 ,腐蚀疲劳裂缝的生长主要与该不锈钢所含之肥粒体相的氢脆现象有关  相似文献   

14.
The objective of the present study was to introduce a cost-effective and environmentally friendly coating to improve the corrosion resistance of the structures located in salt water. The coating solution, based on amorphous aluminum phosphate composition, was synthesized by sol–gel process and applied to AISI 304 stainless steel by dip coating technique. X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy analyses were employed to investigate the phase composition and morphology of the coating. Corrosion behavior of the uncoated and coated samples was investigated using standard salt spray test, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) in 3.5 wt.% NaCl solution. Salt spray test results for the bare substrate revealed a corrosion rate of six-time greater than that of the coated surface after 168 hr exposure time. Electrochemical test results declared that the amorphous AlPO4 coating decreased the corrosion current density of the AISI 304 stainless steel by 10 orders of magnitude. Furthermore, according to the corresponding EIS measurements, the coated surface exhibited a superior anti-corrosion performance than uncoated sample. Overall, the results declared that the amorphous AlPO4 coating could be a good choice for surface protection of stainless steel against electrochemical corrosion in salty environments.  相似文献   

15.
The paper presents the results of instantaneous impedance changes measurements vs. reactivation potential performed by means of dynamic electrochemical impedance spectroscopy (DEIS) technique for AISI 304 stainless steel (SS) dissolution process during intergranular corrosion (IG) in 0.5 M H2SO4 + 0.01 M KSCN solution. With the use of DEIS method, it was possible to estimate dynamic changes of the examined system’s impedance in conditions of proceeding IG process. Furthermore, the paper proposes an alternative way of evaluating AISI 304 stainless steel dissolution rate during intergranular corrosion based on approximation to theory of iron dissolution in sulfuric acid medium. Simultaneously, based on the DEIS measurements, information about the degree of sensitization of the examined material were obtained. Performed research revealed the advantages of the DEIS technique over the classical double-loop electrochemical potentiokinetic reactivation tests when investigating intergranular corrosion process.  相似文献   

16.
In the present study, the stress corrosion cracking (SCC) behavior of ECAP Al5083 alloy was investigated in air as well as in 3.5 % NaCl solution using the slow strain rate tensile test (SSRT). The characteristics of grain boundary precipitates (GBPs), specifically the microchemistry of the SCC behavior of Al5083 alloys, both in “as-received” condition and when deformed by the ECAP process, were examined. The correlations between the SCC resistance and GBP microchemistry were examined. A microstructural evaluation was performed using an optical microscope. SCC tests were carried out using a universal tensile testing machine and the fracture surfaces were studied using scanning electron microscopy (SEM). A strain rate of 1×10−6 s−1 was applied for the SSRT. As the passes increased, the SCC susceptibility of the fine-grained ECAP Al5083 alloy also increased. Moreover, higher ultimate tensile strength and greater elongation were observed. This was due to grain refinement, high-density separations, and the expanded extent of high-density dislocations instigated by severe plastic deformation. Due to the high strength and elongation, the failure analysis showed a ductile mode of fracture. Electron backscattering diffraction (EBSD) analysis was performed to determine more clearly the nature of cracking. EBSD analysis showed that the crack propagation occurred in both transgranular and intergranular modes.  相似文献   

17.
基于电化学噪声技术建立了不锈钢海洋大气点蚀监测系统,利用该系统对处于干湿循环环境下不锈钢的点蚀行为进行监测. 使用时域谱图、时域统计、频域谱图和散粒噪声理论等分析方法对采集到的电化学噪声数据进行处理分析,并结合动电位极化法,形貌分析法共同研究不锈钢的点蚀行为. 研究结果表明,304不锈钢在模拟海洋大气环境下的点蚀行为分为钝化、亚稳态点蚀和稳态点蚀三个阶段. 在钝化阶段,电位电流噪声信号出现少量的同步异向波动,腐蚀事件发生频率高,平均电量低;在亚稳态点蚀阶段,电位电流噪声信号出现大量的同步同向波动,腐蚀事件发生频率降低,平均电量上升,通过扫描电镜观察蚀点;在稳态点蚀阶段,电位电流噪声信号不仅存在大量的同步同向波动,还出现了同步异向波动,腐蚀事件发生频率较低,平均电量大幅度上升,通过扫描电镜观察到电极表面出现小而浅的蚀点. 而动电位极化法可以证实304不锈钢点蚀的发生. 两种分析方法所得结果具有较好的一致性,证明该监测系统很好地实现了对模拟海洋大气环境下304不锈钢点蚀行为的连续监测,并能判断点蚀的发生.  相似文献   

18.
《Analytical letters》2012,45(17):2580-2588
Under the ambient temperature (25°C) and pressure (one Standard Atmospheric Pressure) conditions, surface Volta potential of an austenitic stainless steel was measured using the Scanning Kelvin Probe Force Microscopy (SKPFM) to study its stressed-related corrosion behavior in a 0.5 M chloride solution. In an oxygen and water regulated environment (using a glovebox), the steel shows a map of Volta potentials with high contrasts among the different grains and grain boundaries, which was then linked to the actual corrosion potential (w.r.t. a saturated calomel electrode) based on a rigorous calibration procedure. Corrosion behavior of the steel under tensile stress was then compared to that of the same sample under no tensile stress in light of the measured Volta potential, which was found to be sensitive to the level of applied tensile stress, although the tested stainless steel in general is known for its high corrosion-resident capability. According to this study, surface Volta potential measured by SKPFM can be used as a high-accuracy indicator for localized corrosion of steels.  相似文献   

19.
Polyaniline(PANI)film was electrosynthesized on 304 stainless steel by cyclic voltammetry using aqueous oxalic acid as supporting electrolyte.The potential sweep rates were changed to achieve the PANI film with different thickness and structures.Protective properties of the PANI film for corrosion of stainless steel in 3% NaC1 aqueous solution were investigated by monitoring potentiodynamic polarization curves and electrochemical impedance spectroscopy(EIS).The results showed that the PANI film which was formed with lower sweep rate led to more positive shift of corrosion potential and greater charge transfer resistance,reflecting higher inhibition for corrosion of the stainless steel.  相似文献   

20.
The stress corrosion crack (SCC) of 304 nuclear grade (NG) stainless steel (SS) in 0.5 mol/L NaCl+1.5 mol/L H2SO4 was monitored using electrochemical noise (EN) based on chaos theory, statistics and wavelet analysis. The results indicated that the SCC process was divided into three stages according to the transient features in the EN. In the beginning, compared with the sample without applied stress, the enhanced fluctuation amplitude in the electrochemical current noise (ECN) of the stressed samples was attributed to stress-enhanced pitting corrosion and uniform corrosion; then the fluctuations of ECN for all the samples decreased due to a coverage by the corrosion products; however, the ECN fluctuations of stressed sample were larger than the unstressed sample, suggesting that the stress enhanced the SCC initiation and propagation. Chaos analysis revealed that the correlation dimensions increase from 2.1 to 2.5 during the corrosion process, and the applied stress seems increase the complexity and uncertainty of the ECN signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号