首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to create near-infrared (NIR) luminescent lanthanide complexes suitable for DNA-interaction, novel lanthanide dppz complexes with general formula [Ln(NO3)3(dppz)2] (Ln = Nd3+, Er3+ and Yb3+; dppz = dipyrido[3,2-a:2′,3′-c]phenazine) were synthesized, characterized and their luminescence properties were investigated. In addition, analogous compounds with other lanthanide ions (Ln = Ce3+, Pr3+, Sm3+, Eu3+, Tb3+, Dy3+, Ho3+, Tm3+, Lu3+) were prepared. All complexes were characterized by IR spectroscopy and elemental analysis. Single-crystal X-ray diffraction analysis of the complexes (Ln = La3+, Ce3+, Pr3+, Nd3+, Eu3+, Er3+, Yb3+, Lu3+) showed that the lanthanide’s first coordination sphere can be described as a bicapped dodecahedron, made up of two bidentate dppz ligands and three bidentate-coordinating nitrate anions. Efficient energy transfer was observed from the dppz ligand to the lanthanide ion (Nd3+, Er3+ and Yb3+), while relatively high luminescence lifetimes were detected for these complexes. In their excitation spectra, the maximum of the strong broad band is located at around 385 nm and this wavelength was further used for excitation of the chosen complexes. In their emission spectra, the following characteristic NIR emission peaks were observed: for a) Nd3+: 4F3/24I9/2 (870.8 nm), 4F3/24I11/2 (1052.7 nm) and 4F3/24I13/2 (1334.5 nm); b) Er3+: 4I13/24I15/2 (1529.0 nm) c) Yb3+: 2F5/22F7/2 (977.6 nm). While its low triplet energy level is ideally suited for efficient sensitization of Nd3+ and Er3+, the dppz ligand is considered not favorable as a sensitizer for most of the visible emitting lanthanide ions, due to its low-lying triplet level, which is too low for the accepting levels of most visible emitting lanthanides. Furthermore, the DNA intercalation ability of the [Nd(NO3)3(dppz)2] complex with calf thymus DNA (CT-DNA) was confirmed using fluorescence spectroscopy.  相似文献   

2.
Rare earth (Er3+ and Nd3+) ions doped cadmium lithium boro tellurite (CLiBT) glasses were prepared by melt quenching method. The vis–NIR absorption spectra of these glasses have been analyzed systematically. Judd–Ofelt intensity parameters Ωλ (λ = 2, 4, 6) have been evaluated and used to compute the radiative properties of emission transitions of Er3+ and Nd3+: CLiBT glasses. From the NIR emission spectra of Er3+: CLiBT glasses a broad emission band centered at 1538 nm (4I13/2 → 4I15/2) is observed and from Nd3+: CLiBT glasses, three NIR emission bands at 898 nm (4F3/2 → 4I9/2), 1070 nm (4F3/2 → 4I11/2) and 1338 nm (4F3/2 → 4I13/2) are observed with an excitation wavelength λexci = 514.5 nm (Ar+ Laser). The FWHM and stimulated emission cross-section values are calculated for Er3+ and Nd3+: CLiBT glasses. FWHM × σeP values are also calculated for Er3+: CLiBT glasses.  相似文献   

3.
The solid state synthesis of Cs4Nb6Fi8.5Ii3.5Ia6 starting from Nb6F15 binary fluoride, as well as its crystal structure determined by X-ray single crystal diffraction, are presented in this work. This novel cluster compound is based on a Nb6Ii3Fi6Li3Ia6 (L=F, I) discrete unit and crystallizes in the monoclinic system (space group C2/m; Z=4 ; a=10.4363(4) Å, b=18.1227(7) Å, c=19.5102(9) Å β=101.223(1)°, V=3619.5(3) Å3, R1=0.057; wR2=0.159). This halide is the first octahedral niobium cluster compound containing unshared terminal Ia ligands together with ordered μ2-Ii and μ2-Fi ligands on nine inner positions whilst the three last ones (Li) are slightly affected by a I/F random occupancy. The structural findings are discussed and compared with those of Nb6F15, Nb6I11, CsNb6I11 and the fluorochlorides and fluorobromides recently reported.  相似文献   

4.
(NH4)Sb4F13 crystals (I) are synthesized and their crystal structure (tetragonal crystal system: a = 9.6431(2) Å, c = 6.5503(2) Å, V = 609.11(3) Å3, Z = 2, d calc = 4.100 g/cm3, F(000) = 664, space group I4?) is determined. The main structural units of I are tetranuclear anionic [Sb4F13]? complexes and [NH4]+ cations. The anionic complexes are built of four SbF3 groups linked together by tetrahedral bridging fluorine atom. At room temperature the (NH4)Sb4F13 crystals are isostructural to previously studied МSb4F13 (М = K, Rb, Cs, and Tl). The study of 121,123Sb NQR spectra of compound I is performed in a range of 77-370 K, which shows that when the temperature decreases (<250 K) the substance exhibits piezoelectric properties, as do other compounds of this group, but with a violation of their isostructurality.  相似文献   

5.
The green and red upconversion luminescence of Er3+ in lead chloride tellurite glasses excited at 980 nm is investigated. Three intense emission bands centered at 530, 545, and 658 nm corresponding to the transitions 4S3/24I15/2, 2H11/24I15/2 and 4F9/24I15/2, respectively, were simultaneously observed at room temperature. With increasing PbCl2 content, the intensity of green (530 nm) emissions increase slightly, while the green (545 nm) and red (658 nm) emissions increase significantly. The results indicate that PbCl2 has more influence on the green (545 nm) and red (658 nm) emissions than the green (530 nm) emission. The dependence of upconversion intensities on excitation power and possible upconversion mechanisms are discussed and evaluated.  相似文献   

6.
K3[DyIII(nta)2(H2O)]·5H2O and (NH4)3[DyIII(nta)2] have been synthesized in aqueous solution and characterized by IR, elemental analysis and single-crystal X-ray diffraction techniques. In K3[DyIII(nta)2(H2O)]·5H2O the DyIII ion is nine coordinated yielding a tricapped trigonal prismatic conformation, and its crystal belongs to monoclinic system and C2/c space group. The crystal data are as follows: a = 15.373(5) Å, b = 12.896(4) Å, c = 26.202(9) Å; β = 96.122(5)°, V = 5165(3) Å3, Z = 8, D c = 1.965 g·cm?3, μ = 3.458 mm?1, F(000) = 3016, R 1 = 0.0452 and wR 2 = 0.1025 for 4550 observed reflections with I ≥ 2σ(I). In (NH4)3[DyIII(nta)2] the DyIII ion is eight coordinated yielding a usual dicapped trigonal anti-prismatic conformation, and its crystal belongs to monoclinic system and C2/c space group. The crystal data are as follows: a = 13.736(3) Å, b = 7.9389(16) Å, c = 18.781(4) Å; β = 104.099(3)°, V = 1986.3(7) Å3, Z = 2, D c = 1.983 g·cm?3, μ = 3.834 mm?1, F(000) = 1172, R 1 = 0.0208 and wR 2 = 0.0500 for 2022 observed reflections with I ≥ 2σ(I). The results indicate that the difference in counter ion also influences coordination numbers and structures of rare earth metal complexes with aminopolycarboxylic acid ligands.  相似文献   

7.
The perfluorohexane‐soluble and donor‐free silver compound Ag( A ) ( A =Al(ORF)4; RF=C(CF3)3) prepared using a facile novel route has unprecedented capabilities to form unusual and weakly bound complexes. Here, we report on the three dihalogen–silver complexes Ag(Cl2) A , Ag(Br2) A , and Ag(I2) A derived from the soluble silver compound Ag( A ) (characterized by single‐crystal/powder XRD, Raman spectra, and quantum‐mechanical calculations).  相似文献   

8.
Reactions of AgReO4 and AgCH3SO3 with L = 2-amino-4-methylpyrimidine (Ampym, C5H7N3) in a ratio of 1: 2 in acetonitrile gave the complexes [AgL2(ReO4)] (I) and [AgL2(CH3SO3)] (II). Their structures were determined. The crystals of complex I are monoclinic, space group C2/c, a = 5.985(1), b = 3.465(1), c = 19.071(1) Å, β = 96.52(1)°, V = 1527.0(3) Å3, ρcalcd = 2.507 g/cm3, Z = 4. The crystals of complex II are orthorhombic, space group Pbca, a = 14.784(1), b = 11.991(1), c = 17.711(1) Å, V = 3139.7(4) Å3, ρcalcd= 1.782 g/cm3, Z = 8. Structure I shows discrete cationic complexes [AgL2]+. The silver atom is virtually linearly coordinated to two N atoms of crystallographically equivalent ligands L (Ag-N, 2.156(4) Å; the angle NAgN, 174.7(4)°). The complex cations are united into zigzag chains through the hydrogen bonds N-H...N. The resulting chains are linked by the hydrogen bonds N-H...O to uncoordinated perrhenate anions to form 2D supramolecular layers. In structure II, the Ag+ ion is coordinated by two crystallographically non-equivalent ligands L in a distorted linear fashion: Ag(1)-N(1), 2.166(7) Å;Ag(1)-N(4), 2.181(6) Å; the angle NAgN, 157.2(2)°. The anions CH3SO3 ? are weakly linked to the Ag+ ions (Ag...O 2.72 Å) and are hydrogen-bonded to the complex cations [AgL2]+, uniting them into supramolecular ribbons.  相似文献   

9.
The emission spectra of microcrystalline Cs2NaTbCl6 and Cs2Na(Y0.99Tb0.01)Cl6 have been measured at room temperature and at 77 K. The crystal structures of these compounds are face-centered cubic and the terbium (III) ions lie at sites of octahedral (Oh) symmetry surrounded by six chloride ions. Emission is observed from both the 5D3 and 5D4 excited states of Tb3+. Assignments have been made for nearly all of the magnetic-dipole transitions split out of the Tb3+7F6, 7F5, 7F4, 7F3, 7F2, 7F15D4 and 7F4, 7F25D3 transitions. These assignments are based on the calculated transition energies and relative magnetic-dipole strengths and intensities obtained from a weak-field crystal-field analysis of octahedral TbCl63? units. Magnetic-dipole lines dominate the spectra for transitions of ΔJ = ±1 free-ion parentage, whereas both magnetic-dipole lines and vibronically induced electric-dipole lines contribute significantly to the emission intensities of the ΔJ = 0, ±2 transitions. The crystal-field sub-levels of both 5D3 and 5D4 appear to reach a Boltzmann thermal equilibrium prior to emission. Emission from 5D3 is partially quenched in going from low temperature to high temperature and in going from Cs2NaYCl6: Tb3+ (1%) to Cs2NaTbCl6.This study has led to the identification and assignment of nearly all of the pure magnetic-dipole transitions split out of the Tb3+7F6, 7F5, 7F4, 7F3, 7F2, 7F15D4 and 7F4, 7F25D3 transitions in crystal-line Cs2NaTbCl6. The assignments were based on calculated transition energies and relative magnetic-dipole strengths (and intensities) obtained from a (weak-field) crystal-field analysis of octahedral (Oh) TbCl63? clusters. Excellent agreement between the calculated and observed relative intensities of the magnetic-dipole lines was achieved by assuming a Boltzmann equilibrated set of crystal-field sub-levels for both the 5D4 and 5D3 emitting states. Furthermore, the experimental results suggest that 5D45D3 relaxation is temperature-dependent.The energy levels calculated and displayed in table 1 appear to be qualitatively correct and are in semiquantitative agreement with the emission results (as interpreted in section 4). Calculated and observed transition energies for the assigned magnetic-dipole transitions generally agree to within 0.2%.One of the most remarkable features of the emission spectra obtained on Cs2NaTbCl6 is the absence of any vibrational structure in the ΔJ = ± 1 transitions (7F6, 7F35D4 and 7F4, 7F25D3), and the presence of extensive vibrational structure in the ΔJ = O, ±2 transitions (7F6, 7F4, 7F25D4). If other than OO vibronic transitions do contribute to the ΔJ = ±1 emissions, their intensities must be at least two or three orders-of-magnitude weaker than the OO magnetic-dipole lines. Vibronically induced electric-dipole transitions appear, however, to make substantial contributions to the 7F6, 7F4, 7F25D4 emission spectra. A clear-cut theoretical explanation for the absence of vibrational structure in the ΔJ = ±1 transitions is not readily apparent. We are presently examining this problem in greater detail.  相似文献   

10.
The reaction of tetraphenylphosphonium chloride with an equimolar amount of potassium tetrachloroplatinate or hexachloroplatinic acid in dimethyl sulfoxide gave the complexes [Ph4P]+[PtCl3(DMSO)]? (I) and [Ph4P]+[PtCl5(DMSO)]? (II), respectively. The phosphorus atoms in the cations have tetrahedral environment, the CPC angles and P-C distances 105.63(13)°–112.13(14)°, 1.795(3)–1.797(3) Å I) and 105.7(3)°–112.9(3)°, 1.783(7)–1.791(6) Å II). The platinum coordination polyhedra in the anions [PtCl3(DMSO)]? and [PtCl5(DMSO)]? are distorted square (Pt-S, 2.1937(8); Pt-Cl, 2.2894(10)–2.3024(10) Å; trans-angles: SPtCl, 177.38(4)°; ClPtCl, 175.40(4)°) and octahedron (Pt-S 2.291(2) Å; Pt-Cl, 2.312(2)–2.334(2) Å, trans-angles: SPtCl, 178.28(9)°; ClPtCl, 178.80(9)° and 178.88(8)°).  相似文献   

11.
Single crystals of yttrium aluminium borate, YAl3(BO3)4, (referred to as YAB) doped with 20 and 40 mol% of Nd3+ were grown using a flux growth method. Inconsistencies in regard to the reported ground state splitting of the doped material are pointed out. A consistent splitting and assignment of the 4I9/2 ground state levels of the Kramers-ion Nd3+ was obtained by a combination of both, temperature-dependent 4I9/22P9/2 polarized absorption spectroscopy and room temperature 4F9/24I9/2 luminescence spectroscopy. The group theoretical implications of the crystal field analysis are considered and discussed.  相似文献   

12.
The new pyrazine-pillared solids, AgReO4(C4H4N2) (I) and Ag3Mo2O4F7(C4H4N2)3 (C4H4N2=pyrazine, pyz) (II), were synthesized by hydrothermal methods at 150 °C and characterized using single crystal X-ray diffraction (IP21/c, No. 14, Z=4, a=7.2238(6) Å, b=7.4940(7) Å, c=15.451(1) Å, β=92.296(4)°; IIP2/n, No. 13, Z=2, a=7.6465(9) Å, b=7.1888(5) Å, c=19.142(2) Å, β=100.284(8)°), thermogravimetric analysis, UV-Vis diffuse reflectance, and photoluminescence measurements. Individual Ag(pyz) chains in I are bonded to three perrhenate ReO4- tetrahedra per layer, while each layer in II contains sets of three edge-shared Ag(pyz) chains (π-π stacked) that are edge-shared to four Mo2O4F73- dimers. A relatively small interlayer spacing results from the short length of the pyrazine pillars, and which can be removed at just slightly above their preparation temperature, at >150-175 °C, to produce crystalline AgReO4 for I, and Ag2MoO4 and an unidentified product for II. Both pillared solids exhibit strong orange-yellow photoemission, at 575 nm for I and 560 nm for II, arising from electronic excitations across (charge transfer) band gaps of 2.91 and 2.76 eV in each, respectively. Their structures and properties are analyzed with respect to parent ‘organic free’ silver perrhenate and molybdate solids which manifest similar photoemissions, as well as to the calculated electronic band structures.  相似文献   

13.
Reactions of L2M(CO)X (L = Ph3P, PhMe2P, Ph3As; M = RhI, IrI and X = Cl, Br, I) with
(n = 4 for R = R′ = CH3; n = 2 for R = R′ = p-tolyl and for R = CH3 and R′ = p-tolyl) afford the novel complexes
in which three-coordinate CuI is directly bonded to the five-coordinate metal atom MI. The MI→CuI donor bond is bridged by the azenido group. The halide atom X has migrated from the metal atom to the copper atom.Possible mechanisms for the formation of these complexes and of related new formamidine and trifluoroacetate compounds are considered and the properties of the complexes are discussed.  相似文献   

14.
Concentration‐optimized CaSc2O4:0.2 % Ho3+/10 % Yb3+ shows stronger upconversion luminescence (UCL) than a typical concentration‐optimized upconverting phosphor Y2O3:0.2 % Ho3+/10 % Yb3+ upon excitation with a 980 nm laser diode pump. The 5F4+5S25I8 green UCL around 545 nm and 5F55I8 red UCL around 660 nm of Ho3+ are enhanced by factors of 2.6 and 1.6, respectively. On analyzing the emission spectra and decay curves of Yb3+: 2F5/22F7/2 and Ho3+: 5I65I8, respectively, in the two hosts, we reveal that Yb3+ in CaSc2O4 exhibits a larger absorption cross section at 980 nm and subsequent larger Yb3+: 2F5/2→Ho3+: 5I6 energy‐transfer coefficient (8.55×10?17 cm3 s?1) compared to that (4.63×10?17 cm3 s?1) in Y2O3, indicating that CaSc2O4:Ho3+/Yb3+ is an excellent oxide upconverting material for achieving intense UCL.  相似文献   

15.
Er3+-doped Y2Ti2O7 nanocrystals were fabricated by the sol-gel method. While the annealing temperature exceeds 757 °C, amorphous pyrochlore phase ErxY2−xTi2O7 transfers to well-crystallized nanocrystals, and the average crystal size increases from ∼70 to ∼180 nm under 800-1000 °C/1 h annealing. ErxY2−xTi2O7 nanocrystals absorbing 980 nm photons can produce the upconversion (526, 547, and 660 nm; 2H11/24I15/2, 4S3/24I15/2, and 4F9/24I15/2, respectively) and Stokes (1528 nm; 4I13/24I15/2) photoluminescence (PL). The infrared PL decay curve is single-exponential for Er3+ (5 mol%)-doped Y2Ti2O7 nanocrystals but slightly nonexponential for Er3+ (10 mol%)-doped Y2Ti2O7 nanocrystals. For 5 and 10 mol% doping concentrations, the mechanism of up-converted green light is the two-photon excited-state absorption. Much stronger intensity of red light relative to green light was observed for the sample with 10 mol% dopant. This phenomenon can be attributed to the reduced distance between Er3+-Er3+ ions, resulting in the enhancement of the energy-transfer upconversion and cross-relaxation mechanisms.  相似文献   

16.
The structure of styryl dye, 2-[(E)-2-(4-dipropylaminophenyl)-1-ethenyl]-1,3,3-trimethyl-3H-indolium chloride (I), was investigated using methods such as UV-VIS, fluorescence spectroscopy, and NMR (1H, 13C, APT, HMQC, COSY) and also by examining its electrochemical properties. A study of the acid-base properties revealed the existence of three different forms of the dye. The mechanisms of protolysis and hydrolysis are discussed. The reagent exists in a reactive single-charged form I + over a wide range of acidity (pH 4–11). The optimum analytical wavelength of the singlecharged form is 550 nm, where the molar absorptivity is 5.51 × 104 L mol?1 cm?1. The values of the optimum analytical wavelength and molar absorptivity of the protolysed and hydrolysed forms are: λ max(I-H2+) = 380 nm, ?(I-H2+) = 2.01 × 104 L mol?1 cm?1; λ max(I-OH) = 320 nm, ?(I-OH) = 1.12 × 104 L mol?1 cm?1. A theoretical study of the spectral and chemical properties of I was carried out by performing quantum chemical calculations.  相似文献   

17.
ZnPhen(EtOCS2)2 (I) and Zn(2,2′-Bipy)(n-BuOCS2)2 (II) mixed-ligand complexes have been synthesized. The structures were solved from X-ray diffraction data (CAD-4 and X8-APEX diffractometers, MoK α radiation, 1879 and 3637 F hkl , R = 0.0374 and 0.0315). Crystals I are monoclinic with parameters a = 11.678(3) Å, b = 19.215(3) Å, c = 9.655(1) Å; β = 101.23(1)°; V = 2125.0(7) Å3; Z = 4, space group P21/c; crystals II are triclinic with parameters a = 8.7875(3) Å, b = 11.833(1) Å, c = 13.3454(6) Å; α = 112.154(2)°, β = 108.503(1)°, γ = 92.787(2)°; V = 1196.2(1) Å3; Z = 2, space group 1 $P\bar 1$ . The structures are composed of discrete mononuclear molecules. The polyhedra of the Zn atoms are distorted trigonal bipyramids N2S3 formed by coordination of the N atoms of Phen or 2,2′-Bipy molecules and sulfur atoms of the monodentate and cyclic bidentate xanthogenate ligand. In structures I and II, dimer assemblies are formed by π-π interactions of Phen or 2,2′-Bipy molecules.  相似文献   

18.
Two new coordination polymers, [Pb(IDPT)2(NO3)2] (I) and [Mn(IDPT)(SO4)(H2O)2] (II) (IDPT = imidazo[4,5-f][1,10]phenanthroline), were synthesized by hydrothermal method and characterized by elemental analysis and single-crystal X-ray diffraction technique. The results reveal that the complex I belongs to monoclinic crystal system, space group C2/c and complex II belongs to monoclinic crystal system, P21/c space group. The cell parameters are: a = 19.1970(13), b = 7.3875(5), c = 17.3825(12) Å, β = 100.47(10)°, V = 2424.0(3) Å3, Z = 4, F(000) = 1488 for I; a = 10.9135(6), b = 7.0230(4), c = 19.7034(10) Å, β = 99.32(10)°, V = 1490.25(14) Å3, Z = 4, F(000) = 828 for II. In the structure of complex I, the metal center Pb(II) is six-coordinated, displays an octahedral geometry. Each molecule is further connected with neighboring one via π-π interactions into 1D chain. In complex II, Mn(II) is six-coordinated to form a distorted octahedral geometry. Compound II displays 1D supramolecular chain formed through hydrogen bonds. Additionally, the fluorescent properties for the complexes were investigated. Complexes I and II exhibit strong photoluminescence with emission maximum at 583 and 529 nm at room temperature.  相似文献   

19.
The products of UV photolysis of ternary Ar?CH4(CD4)?F2 mixtures (1:c:c 0,c, c 0=0.001–0.01) at 13–16 K were identified by ESR and FTIR spectroscopy. These products are?CH3 (?CD3) radicals of typesI andII and molecular CH3F?HF complexes. The latter were characterized by the IR bands of the stretching C?F (1003 cm?1) and H?F (3774 cm?1) vibrations. The ESR spectra of radicalsI are asymmetric. The anisotropy of theg-factor (Δg~10?3) of radicalI indicates that the structure of the radicals is nonplanar. The ESR spectrum of the typeII radical is identical to that of matrix-isolated?CH3 (?CD3) radicals with the planar structure (Δg<5·10?5). Under the experimental conditions, the amount of complexes formed in the photolysis is equal to 0.022·c. When the photolysis is ceased, radicalI disappears after ≈103 s and radicalII is stabilized. The limiting concentrations of the stabilized?CH3 and?CD3 radicals are equal to 2·10?2·c and 2·10?3·c, respectively. A mechanism of the formation of the products is suggested. It is based on the assumption that both matrix-isolated CH4 and F2 and their heterodimers CH4?F2 are present in the samples and it takes into account the long-range migration of translationally excited flourine atoms. The CH3F?HF complexes and radicalsI are generated by the photolysis of the CH4?F2 heterodimers. The decay of radicalsI is caused by geminate recombination of proximate F...CH3 pairs. RadicalsII are formed in the reaction of translationally excited fluorine atoms with isolated CH4 (CD4) molecules.  相似文献   

20.
The coordination compounds [CoL2Cl2] (I) and [CdL2(H2O)2(NO3)2] (II) have been synthesized by the reaction of CoCl2 · 6H2O and Cd(NO3)2 · 4H2O with L = 2-amino-4-methylpyrimidine (Ampym, C5H7N3), and their structures have been solved. The crystals of complex I are triclinic, space group $P\bar 1$ , a = 5.627(1) Å, b = 11.191(1) Å, c = 12.445(1) Å, α = 81.00(1)°, β = 77.21(1)°, γ = 76.18(1)°, V = 737.7(2) Å3, ρcalcd = 1.567 g/cm3, Z = 2. The crystals of complex II are monoclinic, space group P21/c, a = 10.390(1) Å, b = 11.982(1) Å, c = 7.624(1) Å, β = 102.61(1)°, V = 926.1(2) Å3, ρcalcd = 1.760 g/cm3, Z = 2. Discrete [CoL2Cl2] moieties are realized in the structure of complex I. The cobalt atom is tetrahedrally coordinated to the two nitrogen atoms of crystallographically nonequivalent ligands L and two chlorine atoms (Co(1)-Navg, 2.051(4)Å; Co(1)-Cl(1), 2.241(1) Å; Co(1)-Cl(2), 2.263 Å; bond angles at the cobalt atom lie within a range of 102.1°–118.6°). The complexes are linked into supramolecular zigzag chains by N-H...N(Cl) hydrogen bonds. In the structure of complex II, the Cd2+ ion (at the inversion center) is coordinated in pairs to the nitrogen atoms of ligand L and the O(NO3) and O(H2O) oxygen atoms. The coordination of the Cd2+ ion is distorted octahedral (Cd(1)-N(1), 2.341Å; Cd(1)-O(1), 2.340(4) Å; Cd(1)-O(4), 2.327(3) Å; bond angles at the cadmium atom lie within a range of 79.1°–100.9°). N-H...N hydrogen bonds link the complexes into supramolecular chains. These chains are linked into a supramolecular framework by the O-H...O hydrogen bonds between water molecules and NO3 groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号