首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
An electrochemical DNA detection method for the phosphinothricin acetyltransferase (PAT) gene sequence from the transgenetic plants was established by using a microplate hybridization assay with cadmium sulfide (CdS) nanoparticles as oligonucleotides label. The experiment included the following procedures. Firstly target PAT ssDNA sequences were immobilized on the polystyrene microplate by physical adsorption. Then CdS nanoparticle labeled oligonucleotide probes were added into the microplate and the hybridization reaction with target ssDNA sequences took place in the microplate. After washing the microplate for three times, certain amounts of HNO3 were added into the microplate to dissolve the CdS nanoparticles anchored on the hybrids and a solution containing Cd2+ ion was obtained. At last differential pulse anodic stripping voltammetry (DPASV) was used for the sensitive detection of released Cd2+ ion. Based on this principle a sensitive electrochemical method for the PAT gene sequences detection was established. The voltammetric currents of Cd2+ were in linear range with the target ssDNA concentration from 5.0 × 10− 13 to 1.0 × 10− 10 mol/L and the detection limit was estimated to be 8.9 × 10− 14 mol/L (3σ). The proposed method showed a good promise for the sensitive detection of specific gene sequences with good selectivity for the discrimination of the mismatched sequences.  相似文献   

3.
4.
The first capillary array scanner for time-resolved fluorescence detection in parallel capillary electrophoresis based on semiconductor technology is described. The system consists essentially of a confocal fluorescence microscope and a x,y-microscope scanning stage. Fluorescence of the labelled probe molecules was excited using a short-pulse diode laser emitting at 640 nm with a repetition rate of 50 MHz. Using a single filter system the fluorescence decays of different labels were detected by an avalanche photodiode in combination with a PC plug-in card for time-correlated single-photon counting (TCSPC). The time-resolved fluorescence signals were analyzed and identified by a maximum likelihood estimator (MLE). The x,y-microscope scanning stage allows for discontinuous, bidirectional scanning of up to 16 capillaries in an array, resulting in longer fluorescence collection times per capillary compared to scanners working in a continuous mode. Synchronization of the alignment and measurement process were developed to allow for data acquisition without overhead. Detection limits in the subzeptomol range for different dye molecules separated in parallel capillaries have been achieved. In addition, we report on parallel time-resolved detection and separation of more than 400 bases of single base extension DNA fragments in capillary array electrophoresis. Using only semiconductor technology the presented technique represents a low-cost alternative for high throughput DNA sequencing in parallel capillaries.  相似文献   

5.
Dual enzyme electrochemical coding for detecting DNA hybridization   总被引:1,自引:0,他引:1  
Wang J  Kawde AN  Musameh M  Rivas G 《The Analyst》2002,127(10):1279-1282
Enzyme-based hybridization assays for the simultaneous electrochemical measurements of two DNA targets are described. Two encoding enzymes, alkaline phosphatase and beta-galactosidase, are used to differentiate the signals of two DNA targets in connection to chronopotentiometric measurements of their electroactive phenol and alpha-naphthol products. These products yield well-defined and resolved peaks at +0.31 V (alpha-naphthol) and +0.63 V (phenol) at the graphite working electrode (vs. Ag/AgCl reference). The position and size of these peaks reflect the identity and level of the corresponding target. The dual target detection capability is coupled to the amplification feature of enzyme tags (to yield fmol detection limits) and with an efficient magnetic removal of non-hybridized nucleic acids. Proper attention is given to the choice of the substrates (for attaining well resolved peaks), to the activity of the enzymes (for obtaining similar sensitivities), and to the selection of the enzymes (for minimizing cross interferences). The new bioassay is illustrated for the simultaneous detection of two DNA sequences related to the BCRA1 breast-cancer gene in a single sample in connection to magnetic beads bearing the corresponding oligonucleotide probes. Prospects for electrochemical coding of multiple DNA targets are discussed.  相似文献   

6.
SERRS is an extremely sensitive and selective technique which when applied to the detection of labelled DNA sequences allows detection limits to be obtained which rival, and in most cases are better than, fluorescence. In this tutorial review the conditions are explored which enable the successful detection of DNA using SERRS. The enhancing surface which is used is crucial and in this case suspensions of nanoparticles were the focus as they allow quantitative behaviour to be achieved in systems analogous to current fluorescence based approaches. The aggregation conditions required to obtain SERRS of DNA affect the sensitivity and the reproducibility and we describe the use of spermine as an effective aggregating agent to achieve excellent reproducibility and sensitivity. The nature of the label which is used, be it fluorescent or non-fluorescent, positively or negatively charged, also affects the SERRS response and these conditions are again discussed. Finally, we show how to detect a specific target DNA sequence in a meaningful diagnostic assay using SERRS and how the approaches described previously in the review are vital to the success of such approaches.  相似文献   

7.
A DNA sequence can be identified with a word over an alphabet N = [A, C, G, T]. Characteristic sequences of a DNA sequence are given in term of classifications of bases of nucleic acids. Using the characteristic sequences, we construct a set of 2 x 2 matrices to represent DNA primary sequences, which are based on counting of the frequency of occurrence of all (0,1) triplets of characteristic sequences. Furthermore, the leading eigenvalues of these matrices are computed and considered as invariants for the DNA primary sequences. Similarity and dissimilarity analysis based on the characteristic sequences are given for eight exon-1 genes of beta-globin about eight species.  相似文献   

8.
An electrochemical method for the simultaneous detection of two different DNA sequences from PAT and FMV 35S gene sequence using CdS and PbS quantum dots (QDs) as labels was described. The QDs were readily functionalized with oligonucleotides as electrochemical DNA probes and selectively hybridized to the complementary sequences immobilized on the microplate. The QDs anchored on the hybrids were dissolved in the solution by the oxidation of HNO3 and further detected by a sensitive differential pulse anodic stripping voltammetric method (DPASV). The DPASV signals of the oxidation of Cd^2+ and Pb^2+ ions present in the solution were different and reflected the identity of corresponding ssDNA targets sequences.  相似文献   

9.
A fluorescence-based integrated optics microfluidic device is presented, capable of detecting single DNA molecules in a high throughput and reproducible manner. The device integrates microfluidics for DNA stretching with two optical elements for single molecule detection (SMD): a plano-aspheric refractive lens for fluorescence excitation (illuminator) and a solid parabolic reflective mirror for fluorescence collection (collector). Although miniaturized in size, both optical components were produced and assembled onto the microfluidic device by readily manufacturable fabrication techniques. The optical resolution of the device is determined by the small and relatively low numerical aperture (NA) illuminator lens (0.10 effective NA, 4.0 mm diameter) that delivers excitation light to a diffraction limited 2.0 microm diameter spot at full width half maximum within the microfluidic channel. The collector (0.82 annular NA, 15 mm diameter) reflects the fluorescence over a large collection angle, representing 71% of a hemisphere, toward a single photon counting module in an infinity-corrected scheme. As a proof-of-principle experiment for this simple integrated device, individual intercalated lambda-phage DNA molecules (48.5 kb) were stretched in a mixed elongational-shear microflow, detected, and sized with a fluorescence signal to noise ratio of 9.9 +/-1.0. We have demonstrated that SMD does not require traditional high numerical aperture objective lenses and sub-micron positioning systems conventionally used in many applications. Rather, standard manufacturing processes can be combined in a novel way that promises greater accessibility and affordability for microfluidic-based single molecule applications.  相似文献   

10.
Two specific carbamyl phosphate synthetase I gene binding nuclear proteins (M. W. 109 kD and 74 kD) have been determined in the rat liver by the protein blotting technique (Southwestern blot assay). The result shows that they are not present in the normal rat spleen and F-26 rat hepatoma cell. The Bal31 nuclease deletion in the CPSI gene 5' upstream region proves that the binding sites for 109 kD and 74 kD are respectively located in the regions of -38 bp to -4 bp and -113 bp to -38 bp. The binding proteins may be the liver-specific ones of the CPSI gene, which are related to hepatocyte differentiation and hepatocarcinogenesis.  相似文献   

11.
Gao  Hongwei  Zhong  Jianghua  Qin  Peng  Lin  Chao  Sun  Wei  Jiao  Kui 《Mikrochimica acta》2009,165(1-2):173-178
Microchimica Acta - An electrochemical DNA detection method was developed for the 35S promoter from Figwort mosaic virus (FMV 35S) gene sequence by using a microplate hybridization assay with PbS...  相似文献   

12.
Xiao PF  Cheng L  Wan Y  Sun BL  Chen ZZ  Zhang SY  Zhang CZ  Zhou GH  Lu ZH 《Electrophoresis》2006,27(19):3904-3915
3-D polyacrylamide gel-based DNA microarray platforms provide a high capacity for nucleic acids immobilization and a solution-mimicking environment for hybridization. However, several technological bottlenecks still remain in these platforms, such as difficult microarray preparation and high fluorescent background, which limit their application. In this study, two new approaches have been developed to improve the convenience in microarray preparation and to reduce the background after hybridization. To control the polymerization process, solutions containing acrylamide-modified oligonucleotide, acrylamide, glycerol and ammonium persulfate are spotted onto a functionalized glass slide, and then the slide is transferred to a vacuum chamber with TEMED, so that TEMED is vaporized and diffused into the spots to induce polymerization. By applying an electric field across a hybridized microarray to remove the nonspecifically bound labeled targets, this approach can solve the problem of high fluorescent background of the gel-based microarray after hybridization. Experimental results show that our immobilization method can be used to construct high quality microarrays and exhibits good reproducibility. Moreover, the polymerization is not affected by PCR medium, so that PCR products can be used for microarray construction without being treated by commercial purification cartridges. Electrophoresis can improve the signal-to-noise significantly and has the ability to differentiate single nucleotide variation between two homozygotes and a heterozygote. Our results demonstrated that this is a reliable novel method for high-throughput mutation analysis and disease diagnosis.  相似文献   

13.
L Zhu  H K Lee  B Lin  E S Yeung 《Electrophoresis》2001,22(17):3683-3687
A continuous spatial temperature gradient was established in capillary electrophoresis by using a simple temperature control device. The temperature profile along the capillary was predicted by theoretical calculations. A nearly linear spatial temperature gradient was established and applied to DNA mutation detection. By spanning a wide temperature range, it was possible to perform simultaneous heteroduplex analysis for various mutation types that have different melting temperatures.  相似文献   

14.
15.
A novel electrochemical biosensor was developed to detect gene mutation by using a DNA-mismatch binding protein: MutS from Escherichia coli. The MutS protein was immobilized onto an Au-electrode surface via complex formation between a histidine tag of the MutS protein and a thiol-modified nitrilotriacetic acid chemically adsorbed on the Au-electrode surface. When a target double-stranded DNA having a single-base mismatch was captured by the MutS protein on the electrode, some electrostatic repulsion arose between polyanionic DNA strands and anionic redox couple ions. Consequently, their redox peak currents on a cyclic voltammogram with the Au electrode drastically decreased, depending on the concentration of the target DNA, according to the redox couple-mediated artificial ion-channel principle. By using this assay, one can detect all types of single-base mismatch and single-base deletion.  相似文献   

16.
Wang J  Rivas G  Parrado C  Cai X  Flair MN 《Talanta》1997,44(11):2003-2010
An electrochemical hybridization biosensor was developed for the detection of short DNA fragments specific to the deadly waterborne pathogen Cryptosporidium. The sensor relies on the immobilization of a 38-mer oligonucleotide unique to the Cryptosporidium DNA onto the carbon-paste transducer, and employs a highly sensitive chronopotentiometric transduction mode for monitoring the hybridization event. Variables of the probe-immobilization, hybridization and indicator-detection steps are optimized to offer convenient quantitation of ng ml(-1) levels of the Cryptosporidium DNA target, in connection with short (3-15 min) hybridization times. The suitability for direct detection of the spiked Cryptosporidium DNA target in untreated drinking and river water samples is demonstrated. Similar performance characteristics are observed at DNA-coated microfabricated thick-film carbon strips. This and similar developments hold great promise for field screening of Cryptosporidium and other microorganisms in environmental samples.  相似文献   

17.
We describe the use of denaturing gradient gel electrophoresis to screen for DNA sequence polymorphisms in the human factor VIII gene. DNA fragments that differ in sequence by only a single base pair can be separated on denaturing gradient gels due to changes in their melting behavior. Previous studies have demonstrated the use of denaturing gradient gels to detect sequence changes in human genomic DNA, including mutations in the beta globin gene and polymorphisms on chromosome 20. We have begun to use denaturing gradient gels to look for polymorphisms within the human factor VIII gene. The DNA sequences of seven cloned fragments from introns in the human factor VIII gene were determined and used to predict a melting map for each fragment. The melting behavior of each cloned fragment was evaluated by electrophoresis into denaturing gradient gels. Appropriate fragments were then used as radioactive probes for hybridization to human DNA samples that had been digested with restriction enzymes. Heteroduplexes formed between the probe and genomic DNA samples were electrophoresed into denaturing gradient gels. The final positions of heteroduplex bands were determined by autoradiography. We describe a general approach for using denaturing gradient gel electrophoresis to find DNA polymorphisms, with particular emphasis on the predictive value of DNA sequence data. We compare the efficiency of polymorphism detection by denaturing gradient gel electrophoresis with detection by restriction fragment length polymorphism (RFLP) analysis. The factor VIII gene appears to have a low level of DNA sequence polymorphism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
19.
A study is presented on the binding kinetics and mechanism of the adsorption of dsDNA on citrate-capped gold nanoparticles (AuNPs). Methods include fluorescence titration, isothermal calorimetry (ITC) titration, dynamic light scattering and gel electrophoresis. It is found that the fluorescence of probe DNA (labeled with Rhodamine Green and measured at excitation/emission peaks of 498/531 nm) is quenched by addition of AuNPs. The Stern-Volmer quenching constant (Ksv) is 1.67?×?10^9 L·mol?1 at 308 K and drops with increasing temperature. The quenching mechanism is mainly static. The results of both fluorescence titrations and ITC show negative values for ΔH and ΔS values. This shows ion-induced dipole-dipole interaction to be the main attractive forces between dsDNA and AuNPs, while electrostatic interactions result in repulsion. The repulsive forces lead to a lower affinity between dsDNA and AuNPs (compared to single-strand DNA). It is also found that dsDNA can prevent the aggregation of AuNPs which is accompanied by a color change from red into blue. The visual detection limit with bare eyes for dsDNA1 is 36 pM. Based on these findings, a colorimetric method was developed to detect the proto-oncogene of serine/threonine-protein kinase B-Raf V600E point mutation in HT29, Ec109, A549, Huh-7 and SW480 cell lines.
Graphical abstract Schematic of the salt-induced aggregation of uncapped gold nanoparticles (AuNPs) which leads to a color change from red to blue. If the AuNPs are coated with dsDNA, aggregation is suppressed.
  相似文献   

20.
A catalytic DNA-templated reaction of hydrolysis of an ester group in an N-modified peptide nucleic acid, which is activated by a Cu2+ complex-PNA, has been discovered and optimized. Both the ester-containing PNA and the metal complex PNA bind neighboring sites on a template DNA. This brings the reacting groups (the ester and the Cu2+ complex) in proximity to each other and accelerates the hydrolysis of the ester approximately 500 times in comparison with its hydrolysis in the absence of the template. The hydrolysis reaction provides >10(2)-fold kinetic discrimination between DNAs that are different from each other at a single nucleotide position. Natural enzyme T4 DNA ligase is slightly less selective. On the basis of this reaction a fully homogeneous and sensitive assay for sequence-specific DNA detection has been developed (10 fmol DNA). Identification of one of four DNAs (variation at one position) can be done in a single experiment. Since the Cu2+ ion is tightly bound in an associate containing the ester PNA, the metal complex PNA, and the template DNA, application of this method in buffers containing other Cu2+-binding ligands, e.g., PCR buffer and physiological buffer, is possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号