首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Thin film gas sensors made of nanocomposite MWCNT·SnO2(1:66), semiconductor compound WO3·SnO2(1:9), and also multicomponent structure MWCNT·SnO2(1:66)/WO3·SnO2(1:9) have been fabricated by high-frequency magnetron sputtering and electron-beam deposition methods. Sensitivity of the prepared sensors to influence of gases, such as hydrogen, methane, butane, and also ethanol vapors, was investigated. Sensors made of MWCNT·SnO2(1:66) and WO3·SnO2(1:9) show appreciable sensitivity to hydrogen and alcohol vapors already at working body temperature 100–150°C. Sensors made of MWCNT·SnO2(1:66)·WO3·SnO2(1:9) can be used for detection of low concentrations of hydrogen and ethanol vapors; besides, monotonous increase in the structure sensitivity with increase in content of the alcohol vapors allows one to apply these sensors also for fast detection of concentration of these vapors in air.  相似文献   

2.
S. Käding  S. Jakobs  U. Guth 《Ionics》2003,9(1-2):151-154
Potentiometric sensors based on zirconia can be used for determining gaseous NO at temperatures between 400 and 480 °C. For such mixed potential sensors, NO sensitive electrode materials such as CdMn2O4 and V2O5 have been described. In order to improve the cell voltage response, composite electrode materials based on V2O5-γ-Al2O3 were investigated. Sensors employing these materials show a better voltage response and an improved adhesion to the solid electrolyte compared with pure V2O5. The optimal temperature was found to be 440 °C. The NO sensitivity is nearly independent on the oxygen partial pressure in the gas. Paper presented at the 8th EuroConference on Ionics, Carvoeiro, Algarve, Portugal, Sept. 16–22, 2001.  相似文献   

3.
The CdSnO3 semiconducting oxide that can be used as a gas-sensitive material for detecting ethanol gas is reported in this paper. CdSnO3 nanoparticles were prepared by a chemical co-precipitation synthesis method, in which the preparation conditions were carefully controlled. The n-type gas-sensing semiconductors were obtained from the as-synthesized powders calcined at 600°C for 1 h. The phase and microstructure of the obtained nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and Brunauer–Emmett–Teller (BET) method with a gas adsorption analyzer. CdSnO3 has a small particle size range of 30–50 nm and a high surface area of 9.12 m2/g, and a uniformity global shape. The gas sensitivity and operating temperature, and selectivity of CdSnO3-based sensors were measured in detail. The gas sensors fabricated by CdSnO3 nanoparticles had good sensitivity and selectivity to vapor of C2H5OH when working temperature at 267°C, the value of gas sensitivity at 100 ppm of C2H5OH gas can reach 11.2 times. Furthermore, gas-sensing mechanism was studied by using chromatographic analysis.  相似文献   

4.
《Current Applied Physics》2018,18(2):246-253
A series of pure and iron doped strontium titanate, (SrFexTi1-xO3; x = 0, 0.1 and 0.2) powders were synthesized, characterized and used to fabricate ethanol sensors for low concentration. X-Ray Diffraction (XRD) technique was used to confirm the single phase formation. Microstructural properties of the powders were investigated using scanning electron microscopy (SEM). Electrical conductivity of all the samples at room temperature (RT) was measured. Sensors were optimized for best responsiveness by varying the operating temperature from 350 °C to 500 °C.The sensor with doping x = 0.2 exhibited best sensing response at 400 °C for ethanol gas. The undoped sensor demonstrated a decrease in resistance on exposure to ethanol gas whereas Fe-doped sensors showed increase in resistance. The doping induced changeover from n to p behavior in the sensing response on doping has been investigated and corroborated with an observed shift in the Fermi level position by X-ray photoelectron spectroscopy (XPS). The disparity in gas sensing response clearly demonstrates inter-connection of multiple influencing factors such as electrical conductivity, morphology, porosity and change in chemical composition on doping. The sensors were exposed to ethanol, nitrogen dioxide, carbon monoxide, butane gases at concentration between 5 ppm and 50 ppm. The sensor exhibited much reduced relative response to all gases other than ethanol which can be utilized for wide range of applications.  相似文献   

5.
A sonochemical method is developed to fabricate SnO2 nanotubular materials from biological substances (here, it is cotton). The cotton fibers in SnCl2 solution were first treated with ultrasonic waves in air, followed by calcinations to give nanotubular materials that faithfully retain the initial cotton morphology. The microstructure and morphology of the obtained SnO2 nanotubules were characterized by the combination of field-emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and N2 adsorption/desorption measurements. The thermal behavior and crystalline properties were examined in the temperature range of 450–700 °C. The nanocrystals composing of SnO2 nanotubules were estimated about 8.5, 13.2, and 14.2 nm corresponding to calcination temperatures of 450, 550, and 700 °C, respectively. The sensor performance of biomorphic SnO2 nanotubules calcined at 700 °C was investigated in the atmosphere of ethanol, formaldehyde, carbinol, carbon monoxide, hydrogen, ammonia, and acetone, respectively, which exhibited a good selectivity for acetone at a working temperature of 350 °C. The sensitivity to 20 ppm acetone, S, was 6.4 at 350 °C with rapid response and recovery (around 10–9 s). These behaviors were well explained in relation to the morphology of the nanotubules thus produced.  相似文献   

6.
Room-temperature sensing characteristics for H2, ethanol, NH3, H2S and water have been investigated with thick-film sensors based on GaN nanoparticles, prepared by a simple chemical route. In general, GaN nanoparticles exhibit satisfactory sensor properties for these gases and vapors even at room temperature. The sensitivity for ethanol is found to be highest, the sensitivity and recovery times being smallest. Gas sensor properties of GaN seem to be related to intrinsic defects, which act as sorption sites for the gas molecules.  相似文献   

7.
《Current Applied Physics》2015,15(8):947-952
In2O3 nanowires functionalized with Fe2O3 nanoparticles were synthesized by the thermal evaporation of In2S3 powders in an oxidizing atmosphere followed by the solvothermal deposition of Fe2O3 and their acetone gas sensing properties were examined. The pristine and Fe2O3-functionalized In2O3 nanowires exhibited responses of 141–390% and 298–960%, respectively, to 10–500 ppm acetone at 200 °C. The Fe2O3-functionalized In2O3 nanowire sensor showed stronger electrical response to acetone gas at 200 °C than the pristine In2O3 nanowire counterpart. The former showed more rapid response but slower recovery than the latter. Both the pristine and Fe2O3-functionalized In2O3 nanowire sensors showed the strongest response to acetone gas at 200 °C. The underlying mechanism for the enhanced sensing performance of the Fe2O3-functionalized In2O3 nanowire sensor towards acetone gas is discussed.  相似文献   

8.
Nanosize films of In2O3:Ga2O3 (96:4 weight %) have been deposited on a glassceramic substrate by the method of rf magnetron sputtering. The surfaces of fabricated films were studied with use of a scanning electron microscope; sizes of grains were determined and the thicknesses of films were measured. In order to prepare a gas-sensitive structure, a thin catalytic palladium layer and ohmic comb contacts were deposited on the In2O3:Ga2O3 film surface by the method of ion-plasma sputtering. The sensitivity of sensors based on the glassceramic/In2O3:Ga2O3 (96:4 weight %)/Pd structure to different concentrations of propane and butane gas mixture, as well as to methane was investigated at temperatures of working substance from 250 to 300°C.  相似文献   

9.
《Current Applied Physics》2015,15(7):789-793
NiFe2O4 thin film with high porosity based gas sensors had been prepared and their microstructure and gas sensing property were investigated. The sensing layer, consisted of perpendicular overlapped NiFe2O4 chains which were induced by altering magnetic field to self-assemble, had high porosity. The phase character and porous microstructure were characterized by X-ray diffraction (XRD) and a polarizing optical microscopy. The gas sensing tests results indicated that the sensor presented a high sensitivity to NH3 at 150 °C, and was selective to NH3 below 200 °C. The large porosity microstructure should benefit the reaction between target gas and sensing material and the detection of low concentration gas at low working temperature. In repeatability tests, the response and recovery time values had only narrow fluctuations.  相似文献   

10.
PtSnRh/C-Sb2O5·SnO2 electrocatalysts with different Pt/Sn/Rh atomic ratios (90:05:05, 70:25:05, and 50:45:05) were prepared by an alcohol reduction process using H2PtCl6·6H2O, SnCl2·2H2O, RhCl3·xH2O as metal sources, ethylene glycol as solvent and reducing agent, and a physical mixture of Vulcan XC72 (85?wt%) and Sb2O5·SnO2 (15?wt%) as support. The electrocatalysts were characterized by X-ray diffraction and transmission electron microscopy. The electro-oxidation of ethanol was studied by cyclic voltammetry and chronoamperometry at 25 and 50?°C and in single direct ethanol fuel cell (DEFC) at 100?°C. The diffractograms of PtSnRh/C-Sb2O5·SnO2 electrocatalysts showed the peaks characteristic of Pt face-centered cubic structure and several others peaks associated with ·SnO2 and Sb2O5·SnO2. Transmission electron micrographs of PtSnRh/C-Sb2O5·SnO2 electrocatalysts showed the metal nanoparticles distributed on the supports with particle sizes of about 2?C3?nm. The electrochemical measurements and the experiments in a single DEFC showed that PtSnRh/C-Sb2O5·SnO2 (90:05:05) and PtSnRh/C-Sb2O5·SnO2 (70:25:05) electrocatalysts exhibited higher performance for ethanol oxidation in comparison with PtSnRh/C electrocatalyst.  相似文献   

11.
The synthesis of ZnO-ZnO:CuO structures in the form of overlapping layers of nanowires of pure and copper oxide-doped zinc oxide is described. These structures are tested as ethanol vapor sensors. The following two-stage method is used to form ZnO:CuO nanowires. At the first stage, ZnO nanowires are formed by chemical deposition from a solution. At the second stage, arrays of ZnO nanowires are coated with a copper-containing layer. The CuO content on the surface of ZnO nanowires is changed by varying the number of immersions in a Cu(NO3)2 solution. The formed structures are studied by scanning electron microscopy, X-ray diffraction, and energy dispersive X-ray analysis. The interaction of the grown sensor structures with ethanol vapors is analyzed by measuring the potential difference between the layers of pure zinc oxide and copper oxide-modified zinc oxide in the temperature range 190–300°C. The response of the sensor is investigated at various ethanol vapor concentrations and detection temperatures.  相似文献   

12.
《Solid State Ionics》1999,116(3-4):211-215
The oxygen and proton conductor Ba2In2O5 is known to undergo a structural transformation in humid atmosphere at about 300°C. The resulting phase Ba2In2O5·H2O was investigated by in-situ high-temperature X-ray diffraction. During the transformation, a transient structure existing near 320°C in a narrow temperature interval is formed. Ba2In2O5·H2O is stable from ≈300°C down to room temperature and may be characterized by S.G. P4/mmm, No. 123, tetragonal, with a=4.1827(10) Å, b=4.1827(10) Å and c=8.9617(10) Å. The atomic rearrangement during the transformation together with the change of the coordination of one half of the In atoms from tetrahedral to octahedral symmetry reduces the unit cell volume of Ba2In2O5·H2O to one quarter of the initial value. Linear thermal expansion coefficients of both phases show a strong anisotropy.  相似文献   

13.
Highly sensitive gas sensors are realized from In2O3 mixed α-Fe2O3 nanorods. At 200 °C, the sensitivity of the sensors upon exposure to 200 ppm ethanol is 31.3, and the sensors exhibit linear dependence of the sensitivity on the ethanol concentration at 100 °C and 200 °C. In contrast, nonlinear gas sensing characteristics are observed at 300 °C and 400 °C. The relationship between sensitivity and ethanol concentration is discussed by using the conduction model, and the experimental data are in good agreement with the obtained equations. Our results imply that In2O3 mixed α-Fe2O3 nanorods are good candidates for nano-scale gas sensors and the relationship between sensitivity and ethanol concentration is significantly influenced by temperatures.  相似文献   

14.
O. Schäf 《Ionics》1996,2(3-4):266-273
Alkali-ion conducting glasses/glass ceramics of the system Me2O-A12O3-SiO2 (Me=Li, Na) were applied as solid electrolytes in potentiometric gas sensors to detect CO2 in the presence of O2 at increased temperatures. The corresponding Me-Carbonates were utilized as auxiliary electrodes. Sensors using the direct Au-glass contact as a kind of reference electrode (type I), as well as symmetrical sensors with carbonate phase at the reference and measuring electrode (type II - for comparative measurements) were manufactured. By applying Au as electrode metal, the theoretically expected EMF difference and the observed EMF difference of both sensor types agree quite well with the expected values according to the Nernst equation between 500 and 600 °C (over four orders of magnitude of CO2 partial pressure (10−5 – 10−1 bar) at constant O2 partial pressure (2.1×10−1 bar)). A long time stability of 120 days for sensors of type I with Li glasses has been observed, although evaporation of carbonate phase (Li2CO3) was detected under the conditions of sensor application. Sensors of type I (with Li2CO3) show thermodynamically unexpected cross-sensitivities to H2O. Paper presented at the 3rd Euroconference on Solid State Ionics, Teulada, Sardinia, Italy, Sept. 15–22, 1996  相似文献   

15.
The interactions between selenium vapors and coal accessory Ca/Fe-minerals favor selenium emission control by transferring selenium into fly ash during coal combustion. Considering the complicated effects of iron transformation on selenium retention, iron species in fly ashes from seven coal-fired power plants were distinguished and the associations between selenium and iron minerals were assessed. Iron oxides (including Fe3O4, γ-Fe2O3 and ɑ-Fe2O3) were determined as the main form of iron minerals in fly ash. The adsorption of selenium vapors by different iron oxides was conducted at temperatures ranging from 300 to 900 °C and the species of captured selenium were identified. Furthermore, reaction sites on the surfaces of fresh and reacted iron oxides were compared to investigate the mechanism regarding selenium adsorption over these iron oxides, which were further clarified through density functional theory study. The results showed that iron oxides were surely to play a significant role in selenium retention mainly through chemisorption and the reactions probably occurred at temperatures below 900 °C. At 300 °C, ɑ-Fe2O3 had better selenium adsorption performance than Fe3O4/γ-Fe2O3. Regardless of iron species, Fe atoms on iron oxides participated in the selenium adsorption by forming a Se–O–Fe Structure. With temperature increasing, selenium adsorption by Fe atoms was suppressed, which caused a drop off in selenium capture capacity of Fe3O4 and ɑ-Fe2O3. Differently, increasing temperature promoted selenium adsorption over γ-Fe2O3, which owned a high selenium adsorption capacity even at 700 °C. Further analysis confirmed that the presence of O2/H2O(g) in the flue gas contributed to the formation of oxygen vacancies on the surface of γ-Fe2O3 at high temperatures and facilitated selenium vapors to react with Fe atoms.  相似文献   

16.
Bilayer CeO2/TiO2 films with high-k dielectric property were prepared by rf magnetron sputtering technique at room temperature. Effect of annealing treatment on resistive switching (RS) properties of bilayer CeO2/TiO2 films in O2 ambient at different temperature in the range of 350–550 °C was investigated. Our results revealed that the bilayer films had good interfacial property at 500 °C and this annealing temperature is optimum for different RS characteristics. Results showed that bilayer CeO2/TiO2 film perform better uniformity and reliability in resistive switching at intermediate temperature (i.e. 450 °C and 500 °C) instead of low and high annealing temperature (i.e. 350 °C and 550 °C) at which it exhibits poor crystalline structure with more amorphous background. Less Gibbs free energy of TiO2 as compared to CeO2 results in an easier re-oxidation of the filament through the oxygen exchange with TaN electrode. However, the excellent endurance property (>2500 cycles), data retentions (105 s) and good cycle-to-cycle uniformity is observed only in 500 °C annealed devices. The plots of cumulative probability, essential memory parameter, show a good distribution of Set/Reset voltage.  相似文献   

17.
SnO2-impregnated zeolite composites were used as gas-sensing materials to improve the sensitivity and selectivity of the metal oxide-based resistive-type gas sensors. Nanocrystalline MFI type zeolite (ZSM-5) was prepared by hydrothermal synthesis. Highly dispersive SnO2 nanoparticles were then successfully assembled on the surface of the ZSM-5 nanoparticles by using the impregnation methods. The SnO2 nanoparticles are nearly spherical with the particle size of ~?10 nm. An enhanced formaldehyde sensing of as-synthesized SnO2-ZSM-5-based sensor was observed whereas a suppression on the sensor response to other volatile organic vapors (VOCs) such as acetone, ethanol, and methanol was noticed. The possible reasons for this contrary observation were proposed to be related to the amount of the produced water vapor during the sensing reactions assisted by the ZSM-5 nanoparticles. This provides a possible new strategy to improve the selectivity of the gas sensors. The effect of the humidity on the sensor response to formaldehyde was investigated and it was found the higher humidity would decrease the sensor response. A coating layer of the ZSM-5 nanoparticles on top of the SnO2-ZSM-5-sensing film was thus applied to further improve the sensitivity and selectivity of the sensor through the strong adsorption ability to polar gases and the “filtering effect” by the pores of ZSM-5.  相似文献   

18.
通过使用化学气相沉积法,成功制备出超长、大尺寸的Sb掺杂ZnO微米线.基于非平衡电桥原理,利用单根Sb掺杂ZnO微米线作为非平衡电桥的一个桥臂,制作出了可以在室温环境下工作的气敏传感器原型器件.结果表明:室温下测得该传感器对20,50,100和200 ppm(1 ppm=10^-6)不同浓度的丙酮及乙醇气体的响应-恢复曲线均呈现为矩形形状,在空气及被测气体中均有稳定的电流值,并随着探测气体浓度的增大,器件的响应值也在逐渐增加.此外,还发现器件对丙酮气体具有更好的选择性,当丙酮气体浓度为200 ppm时,该传感器的响应时间为0.2 s,恢复时间为0.3 s,响应度高达243%.通过与普通电导式气敏传感器对比发现,采用这种非平衡电桥结构传感器可以明显地提高响应度,使响应和恢复时间更快.此外,还研究了器件的气体探测机理.  相似文献   

19.
本文利用细菌纤维素为模板制备了p型Co3O4修饰的n型ZnO纳米复合材料,通过XRD、SEM、HRTEM、EDS和XPS等手段对纳米复合材料的组成、形貌与元素分布进行了相应的表征. 相对于纯ZnO来说,p-Co3O4/n-ZnO复合材料对有机挥发性气体响应的灵敏度有明显提升,例如复合材料对100 ppm丙酮的灵敏度为63.7(最佳温度为180 °C),是纯ZnO(最佳温度为240 °C,灵敏度为2.3)的26倍. 从材料表面氧空位(缺陷控制)、Co3O4的催化活性以及p-n异质结三个方面解释了复合材料对VOCs的高响应特性. 同时细菌纤维素可以作为模板设计功能化的异质结复合物用于VOCs的测试或者其他应用.  相似文献   

20.
The dispersed and uniform hematite nanowires (α-Fe2O3 NWs) with the different diameter were synthesized using SBA-15 as hard templates by the nanocasting method, and the diameter of α-Fe2O3 NWs was about 4, 6 and 8 nm, respectively. The BET surface area of α-Fe2O3 NWs changed a little, while the bandgap decreased from 2.07, 2.03 to 1.91 eV with the increasing diameter according to quantum size effect. Compared all samples, the sensitivity of α-Fe2O3 NWs based gas-sensors increased from 10.64 to 11.43 with the bandgap and BET surface area α-Fe2O3 NWs in 100 ppm ethanol at 300 °C, and the response–recovery time was also improved for the good crystallinity. It's concluded that the surface area greatly affected the gas-sensing performance of α-Fe2O3 NWs based sensors, while the bandgap and crystallinity also influenced the gas-sensing behavior to some extent. The α-Fe2O3 NWs based gas-sensors exhibited the high sensitivity, fast response–recovery and good selectivity to ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号