首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this paper we investigate the mixture adsorption of ethylene, ethane, nitrogen and argon on graphitized thermal carbon black and in slit pores by means of the Grand Canonical Monte Carlo simulations. Pure component adsorption isotherms on graphitized thermal carbon black are first characterized with the GCMC method, and then mixture simulations are carried out over a wide range of pore width, temperature, pressure and composition to investigate the cooperative and competitive adsorption of all species in the mixture. Results of mixture simulations are compared with the experimental data of ethylene and ethane (Friederich and Mullins, 1972) on Sterling FTG-D5 (homogeneous carbon black having a BET surface area of 13 m2/g) at 298 K and a pressure range of 1.3–93 kPa. Because of the co-operative effect, the Henry constant determined by the traditional chromatography method is always greater than that obtained from the volumetric method.  相似文献   

3.
Adsorption of carbon dioxide and methane in porous activated carbon and carbon nanotube was studied experimentally and by Grand Canonical Monte Carlo (GCMC) simulation. A gravimetric analyzer was used to obtain the experimental data, while in the simulation we used graphitic slit pores of various pore size to model activated carbon and a bundle of graphitic cylinders arranged hexagonally to model carbon nanotube. Carbon dioxide was modeled as a 3-center-Lennard-Jones (LJ) molecule with three fixed partial charges, while methane was modeled as a single LJ molecule. We have shown that the behavior of adsorption for both activated carbon and carbon nanotube is sensitive to pore width and the crossing of isotherms is observed because of the molecular packing, which favors commensurate packing for some pore sizes. Using the adsorption data of pure methane or carbon dioxide on activated carbon, we derived its pore size distribution (PSD), which was found to be in good agreement with the PSD obtained from the analysis of nitrogen adsorption data at 77 K. This derived PSD was used to describe isotherms at other temperatures as well as isotherms of mixture of carbon dioxide and methane in activated carbon and carbon nanotube at 273 and 300 K. Good agreement between the computed and experimental isotherm data was observed, thus justifying the use of a simple adsorption model.  相似文献   

4.
The present work aims at providing additional insight into the crucial effect of pore size and pressure on the adsorption of H2 and D2 in porous carbons by means of Grand Canonical Monte Carlo simulations in model slit micropores at 77 K. In order to address the quantum behavior of the molecules the Feynman–Hibbs corrected LJ interaction potential is used for fluid–solid and fluid–fluid interactions. Based on the GCMC isotherms for the two isotopes, D2 selectivity over H2 is deduced for pores with different sizes as a function of pressure. Furthermore, GCMC results are coupled with experimental high pressure H2 and D2 adsorption data at 77 K for a commercial carbon molecular sieve (Takeda 3A).  相似文献   

5.
Using grand canonical Monte Carlo (GCMC) simulations of molecular models, we investigate the nature of water adsorption and desorption in slit pores with graphitelike surfaces. Special emphasis is placed on the question of whether water exhibits capillary condensation (i.e., condensation when the external pressure is below the bulk vapor pressure). Three models of water have been considered. These are the SPC and SPC/E models and a model where the hydrogen bonding is described by tetrahedrally coordinated square-well association sites. The water-carbon interaction was described by the Steele 10-4-3 potential. In addition to determining adsorption/desorption isotherms, we also locate the states where vapor-liquid equilibrium occurs for both the bulk and confined states of the models. We find that for wider pores (widths >1 nm), condensation does not occur in the GCMC simulations until the pressure is higher than the bulk vapor pressure, P0. This is consistent with a physical picture where a lack of hydrogen bonding with the graphite surface destabilizes dense water phases relative to the bulk. For narrow pores where the slit width is comparable to the molecular diameter, strong dispersion interactions with both carbon surfaces can stabilize dense water phases relative to the bulk so that pore condensation can occur for P < P0 in some cases. For the narrowest pores studied--a pore width of 0.6 nm--pore condensation is again shifted to P > P0. The phase-equilibrium calculations indicate vapor-liquid coexistence in the slit pores for P < P0 for all but the narrowest pores. We discuss the implications of our results for interpreting water adsorption/desorption isotherms in porous carbons.  相似文献   

6.
In this paper, we investigate the effect of the solid surface on the fluid-fluid intermolecular potential energy. This modified fluid-fluid interaction energy due to the inducement of a solid surface is used in the grand canonical Monte Carlo (GCMC) simulation of various noble gases, nitrogen, and methane on graphitized thermal carbon black. This effect is such that the effective interaction potential energy between two particles close to surface is less than the potential energy if the solid substrate is not present. With this modification the GCMC simulation results agree extremely well with the experimental data over a wide range of pressures while the simulation results with the unmodified potential energy give rise to a shoulder near the neighborhood of monolayer coverage and the significant overprediction of the second and higher layer coverages. In particular the unmodified GCMC results exhibit very sharp change in those higher layers while the experimental data have a much gradual change in the uptake. We will illustrate this theory with adsorption data of argon, xenon, neon, nitrogen, and methane on graphitized thermal carbon black.  相似文献   

7.
8.
In this paper we consider the adsorption of argon on the surface of graphitized thermal carbon black and in slit pores at temperatures ranging from subcritical to supercritical conditions by the method of grand canonical Monte Carlo simulation. Attention is paid to the variation of the adsorbed density when the temperature crosses the critical point. The behavior of the adsorbed density versus pressure (bulk density) shows interesting behavior at temperatures in the vicinity of and those above the critical point and also at extremely high pressures. Isotherms at temperatures greater than the critical temperature exhibit a clear maximum, and near the critical temperature this maximum is a very sharp spike. Under the supercritical conditions and very high pressure the excess of adsorbed density decreases towards zero value for a graphite surface, while for slit pores negative excess density is possible at extremely high pressures. For imperfect pores (defined as pores that cannot accommodate an integral number of parallel layers under moderate conditions) the pressure at which the excess pore density becomes negative is less than that for perfect pores, and this is due to the packing effect in those imperfect pores. However, at extremely high pressure molecules can be packed in parallel layers once chemical potential is great enough to overcome the repulsions among adsorbed molecules.  相似文献   

9.
10.
The average interstitial nanopore structure of single-wall carbon nanohorn (SWNH) assemblies was determined using X-ray diffraction and grand canonical Monte Carlo (GCMC) simulation aided N(2) adsorption at 77 K. The interstitial nanopores of SWNH assemblies can be regarded as quasi one-dimensional pores due to the partial orientation of the SWNH particles; the average pore width of the interstitial pores is 0.6 nm. Good agreement between the GCMC simulation of a structural model with one-dimensional interstitial nanopores and an experimental adsorption isotherm below P/P(0) = 10(-4) is evidence of the quasi one-dimensionality of the interstitial nanopores. A snapshot from the GCMC simulation showed one-dimensional growth of adsorbed N(2) molecules.  相似文献   

11.
Stockmayer流体在活性炭孔中的吸附的分子模拟   总被引:1,自引:0,他引:1  
金文正  汪文川 《化学学报》2000,58(6):622-626
应用巨正则系综monteCarlo方法模拟Stockmayer流体[以一氯二氟甲烷(R22)为代表]在活性炭孔中的吸附。模拟中R22分子采用等效Stockmayer势能模型,狭缝碳孔墙采用10-4-3模型。通过模拟得到了最佳孔径,并在最佳孔径下,针对不同的主体压力及活性基团密度,得到了吸附等温线、孔中流体的局部密度分布图和较为直观的孔内流体分子的瞬时构象,分析了吸附等温线的特征及孔内流体的吸附结构,认为在0.0,1.0sites/nm^2的活性基团密度下的碳孔内分别发生物理及化学吸附,并确定了最佳操作压力,为工业设计合适的催化剂提供依据。  相似文献   

12.
A Monte Carlo simulation method is used to study the effects of adsorption strength and topology of sites on adsorption of simple Lennard-Jones fluids in a carbon slit pore of finite length. Argon is used as a model adsorbate, while the adsorbent is modeled as a finite carbon slit pore whose two walls composed of three graphene layers with carbon atoms arranged in a hexagonal pattern. Impurities having well depth of interaction greater than that of carbon atom are assumed to be grafted onto the surface. Different topologies of the impurities; corner, centre, shell and random topologies are studied. Adsorption isotherms of argon at 87.3 K are obtained for pore having widths of 1, 1.5 and 3 nm using a Grand Canonical Monte Carlo simulation (GCMC). These results are compared with isotherms obtained for infinite pores. It is shown that the surface heterogeneity affects significantly the overall adsorption isotherm, particularly the phase transition. Basically it shifts the onset of adsorption to lower pressure and the adsorption isotherms for these four impurity models are generally greater than that for finite pore. The positions of impurities on solid surface also affect the shape of the adsorption isotherm and the phase transition. We have found that the impurities allocated at the centre of pore walls provide the greatest isotherm at low pressures. However when the pressure increases the impurities allocated along the edges of the graphene layers show the most significant effect on the adsorption isotherm. We have investigated the effect of surface heterogeneity on adsorption hysteresis loops of three models of impurity topology, it shows that the adsorption branches of these isotherms are different, while the desorption branches are quite close to each other. This suggests that the desorption branch is either the thermodynamic equilibrium branch or closer to it than the adsorption branch.  相似文献   

13.
We have analyzed various phenomena that occur in nanopores, focusing on elucidating their key mechanisms, to advance the effective engineering use of nanoporous materials. As ideal experimental systems, molecular simulations can effectively provide information at the molecular level that leads to mechanistic insight. In this short review, several of our recent results are presented. The first topic is the critical point depression of Lennard-Jones fluid in silica slit pores due to finite size effects, studied by our original Monte Carlo (MC) technique. We demonstrate that the first layers of adsorbed molecules in contact with the pore walls act as a “fluid wall” and impose extra finite size effects on the fluid confined in the central portion of the pore. We next present a new kernel for pore size distribution (PSD) analysis, based entirely on molecular simulation, which consists of local isotherms for nitrogen adsorption in carbon slit pores at 77 K. The kernel is obtained by combining grand canonical Monte Carlo (GCMC) method and open pore cell MC method that was developed in the previous study. We show that overall trends of the PSDs of activated carbons calculated with our new kernel and with conventional kernel from non-local density functional theory are nearly the same; however, apparent difference can be seen between them. As the third topic, we apply a free energy analysis method with the aid of GCMC simulations to investigate the gating behavior observed in a porous coordination polymer, and propose a mechanism for the adsorption-induced structural transition based on both the theory of equilibrium and kinetics. Finally, we construct an atomistic silica pore model that mimics MCM-41, which has atomic-level surface roughness, and perform molecular simulations to understand the mechanism of capillary condensation with hysteresis. We calculate the work required for the gas–liquid transition from the simulation data, and show that the adsorption branch with hysteresis for MCM-41 arise from spontaneous capillary condensation from a metastable state.  相似文献   

14.
15.
《Fluid Phase Equilibria》2006,242(2):189-203
Successful application of the reaction ensemble Monte Carlo (REMC) method to compute multiple-reaction chemical equilibria requires a reasonably high acceptance probability for all forward and backward reaction moves during the production stage of a simulation run. To achieve this for a system that involves almost irreversible multiple reactions, it is necessary to choose a thermodynamically-equivalent alternative set of linearly independent reactions, such that the occurrence of very large chemical equilibrium constants is avoided for as many reactions in the set as possible. In this work, the need for such a strategy is justified and applied to the combined hydrogenation of ethylene and propylene, which involves six components and requires a set of four linearly independent reactions. Already validated effective pair potential models were used: one-center Lennard–Jones (1CLJ) models for hydrogen and methane, two-center LJ plus point quadrupole (2CLJQ) models for ethylene, ethane and propylene, and a three-center LJ (3CLJ) model for propane. No binary adjustable parameters were needed to compute the unlike-pair LJ interactions. Simulation results were obtained for the effect of temperature and pressure on the conversions of ethylene and propylene, yield of methane, and density of the system at equilibrium. These results were found to be in very good agreement with calculations using the PSRK group contribution equation of state.  相似文献   

16.
The effects of surface dimensions and topology on the adsorption of water on a graphite surface at 298 K were investigated using the grand canonical Monte Carlo (GCMC) simulation. Regarding the surface topology, we specifically considered the functional group and its position on the surface. The hydroxyl group (OH) is used as a model for the functional group. For describing the interaction of water, we used the potential model proposed by Muller et al., and the simulated isotherms of water in slit pores are found to depend on the position and concentration of the functional group. The onset of adsorption shifts to lower pressure when the concentration of functional group increases or when the functional group is positioned at the center of the graphene surface. The configuration of a group of functional groups also affects the adsorption isotherm. In all cases investigated, we have found that the hysteresis loop always exists, and the loop size depends on the concentration of the functional group and its position. Finally, we tested the molecular model of water adsorption on a functional graphite pore against the experimental data of a commercial activated carbon. The agreement is found to be satisfactory when the model porous solid is composed of pores having width in the range between 10 and 20 A and functional groups positioned at the center of the graphitic wall.  相似文献   

17.
乐园  陈建峰  汪文川 《物理化学学报》2004,20(11):1303-1307
用巨正则系综蒙特卡罗(GCMC)模拟方法结合统计积分方程(SIE)计算了SiO2空心微球球壳上的孔径分布(PSD).HRTEM、XRD及氮气吸附等实验测试表明,SiO2空心微球的球壳上有无序的介孔孔道.在模拟中,基于实验数据,将SiO2空心微球模型化为具有一定孔径分布的园柱孔,流体模型化为Lennard-Jones(LJ)球,流体分子和孔壁间的相互作用采用Wang等人[10]最近提出的完全解析的势函数描述.模拟结果显示,用孔径分布拟合的吸附数据和实验吸附等温线吻合良好,说明PSD能够十分有效地表示SiO2空心微球的微孔结构.  相似文献   

18.
密度泛函与分子模拟计算介孔孔径分布比较   总被引:1,自引:0,他引:1  
用巨正则系综Monte Carlo模拟(GCMC)方法和密度泛函理论( DFT)结合统计积分方程(SIE)计算了介孔材料的孔径分布.为比较这两种方法,以77 K氮气在介孔活性碳微球中的吸附数据为依据,求出其孔径分布.在GCMC模拟和DFT计算中,流体分子模型化为单点的Lerrnard-Jones球;流体分子与吸附剂材料之间的作用采用平均场理论中的10-4-3模型.在DFT方法中,自由能采用Tarazona 提出的加权近似密度泛函方法(weighted density approximation,WDA)求解.结果表明,对于孔径大于1.125 nm的介孔材料,GCMC和DFT两种方法都可以用来研究介孔材料的孔径分布;对于小于1.125 nm的介孔材料,不能用DFT方法计算孔径分布(DFT方法本身的近似产生了误差),只能用分子模拟方法.  相似文献   

19.
用巨正则系综MonteCarlo(GCEMC)方法模拟了活性碳孔吸附丙烷时的微观结构.在GCEMC模拟中,非极性丙烷分子采用单点LJ球状分子模型,狭缝活性碳孔墙采用10-4-3势能模型.在温度T=134.3K下,模拟并观察到了丙烷分子在狭缝活性碳孔中的吸附、脱附以及毛细凝聚现象,得到了吸附等温线和孔中流体的局部密度轮廓图.从分子水平出发,详细分析了吸附、毛细冷凝时孔中流体的微观结构,为认识、理解吸附的微观机理提供了工具与借鉴.  相似文献   

20.
用巨正则Monte Carlo (GCMC)方法模拟了超临界甲烷在层柱纳米材料中的吸附.模拟中,层柱纳米材料采用了柱子均匀分布在层板间的模型, 非极性分子甲烷采用Lennard Jones分子模型, 层板墙采用Steele的10 4 3模型, 流体分子与柱子的相互作用采用点 点 (site to site) 的方法计算.得到了甲烷的随着压力先增大后减小的超额吸附等温线.在T=207.3 K时,1.02、1.70和2.38 nm孔宽对应的最适操作压力 (即对应于最大吸附量时的操作压力) 分别为2.4、3.1和3.7 MPa.然而,在T=237.0 K时,1.02、1.70和2.38 nm孔宽对应的最适操作压力分别为2.9、3.6和4.9 MPa,分别比T=207.3 K时相同孔宽下对应的最适操作压力至少高0.5 MPa. 模拟结果表明, GCMC方法是研究材料吸附性能的一种强有力的工具.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号