首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Co(III) complexes of N(3)O-donor tripodal ligands, 2,4-di(tert-butyl)-6-{[bis(2-pyridyl)methyl]aminomethyl}phenolate (tbuL), 2,4-di(tert-butyl)-6-{[bis(6-methyl-2-pyridyl)methyl]aminomethyl}phenolate (tbuL(Mepy)(2)), were prepared, and precursor Co(II) complexes, [Co(tbuL)Cl] (1) and [Co(tbuL(Mepy)(2))Cl] (2), and ternary Co(III) complexes, [Co(tbuL)(acac)]ClO(4) (3), [Co(tbuL)(tbu-cat)] (4), and [Co(tbuL(Mepy)(2))(tbu-SQ)]ClO(4) (5), where acac, tbu-cat, and tbu-SQ refer to pentane-2,4-dionate, 3,5-di(tert-butyl)catecholate, and 3,5-di(tert-butyl)semiquinonate, respectively, were structurally characterized by the X-ray diffraction method. Complexes 3 and 5 have a mononuclear structure with a fac-N(3)O(3) donor set, while 4 has a mer-N(3)O(3) structure. The cyclic voltammogram (CV) of complex 3 exhibited one reversible redox wave centered at 0.93 V (vs Ag/AgCl) in CH(3)CN. Complex 5 was converted to a phenoxyl radical species upon oxidation with Ce(IV), showing a characteristic pi-pi* transition band at 412 nm. The ESR spectrum at low temperature and the resonance Raman spectrum of 3 established that the radical species has a Co(III)-phenoxyl radical bond. On the other hand, the CVs showed two oxidation processes at E(1/2) = 0.01 and E(pa) = 0.92 V for 4 and E(1/2a) = 0.05 and E(1/2b) = 0.69 V for 5. The rest potential of 4 (-0.11 V) was lower than the E(1/2) value, whereas that of 5 (0.18 V) was higher, indicating that the first redox wave of 4 and 5 is assigned to the tbu-cat and the tbu-SQ redox process, respectively. One-electron oxidized 4 showed absorption, resonance Raman, and ESR spectra which are similar to those of 5, suggesting formation of a stable Co(III)-semiquinonate species, which has the same oxidation level of 5. The resonance Raman spectrum of two-electron oxidized 4 showed the nu(8a) bands of the semiquinonate and phenoxyl radical, which were absent in the spectrum of one-electron oxidized 5. Since both oxidized species were ESR inactive at 5 K, the former was concluded to be a biradical species containing semiquinonate and phenoxyl radicals coupled antiferromagnetically and the latter to a species with a coordinated quinone.  相似文献   

2.
The reaction of WOCl(4) with 2,4-di-tert-butyl-6-((isopropylamino)methyl)phenol followed by the reaction with phenyl isocyanate leads to the formation of imidotungsten(VI) complex [W(NPh)Cl(3)(OC(6)H(3)(CH(2)NH-i-Pr)-2-t-Bu(2)-4,6)] 4 with a chelating aminophenolate ligand. When the same procedure was applied using aminophenols with bulkier substituents in the amino group, the final product was an unexpected Schiff-base complex [W(NPh)Cl(3)(OC(6)H(3)(CH=NPh)-2-t-Bu(2)-4,6)] 5, where the ligand is derived from 2,4-di-tert-butyl-6-((phenylimino)methyl)phenol. Complex 5 is also formed in the thermal degradation of 4. On the whole, 5 appears to be formed by a disproportionation of intermediate compounds, which are analogous to complex 4. The solid-state structures of 4 and 5 have been determined by X-ray crystallography whereas the solution structures were studied by (1)H and (13)C NMR.  相似文献   

3.
Phenolate and phenoxyl radical complexes of a series of alkaline earth metal ions as well as monovalent cations such as Na+ and K+ have been prepared by using 2,4-di-tert-butyl-6-(1,4,7,10-tetraoxa-13-aza-cyclopentadec-13-ylmethyl)phenol (L1H) and 2,4-di-tert-butyl-6-(1,4,7,10,13-pentaoxa-16-aza-cyclooctadec-16-ylmethyl)phenol (L2H) to examine the effects of the cations on the structure, physicochemical properties and redox reactivity of the phenolate and phenoxyl radical complexes. Crystal structures of the Mg2+- and Ca2+-complexes of L1- as well as the Ca2+- and Sr2+-complexes of L2- were determined by X-ray crystallographic analysis, showing that the crown ether rings in the Ca2+-complexes are significantly distorted from planarity, whereas those in the Mg2+- and Sr2+-complexes are fairly flat. The spectral features (UV-vis) as well as the redox potentials of the phenolate complexes are also influenced by the metal ions, depending on the Lewis acidity of the metal ions. The phenoxyl radical complexes are successfully generated in situ by the oxidation of the phenolate complexes with (NH4)(2)[Ce4+(NO3)6] (CAN). They exhibited strong absorption bands around 400 nm together with a broad one around 600-900 nm, the latter of which is also affected by the metal ions. The phenoxyl radical-metal complexes are characterized by resonance Raman, ESI-MS, and ESR spectra, and the metal ion effects on those spectroscopic features are also discussed. Stability and reactivity of the phenoxyl radical-metal complexes are significantly different, depending on the type of metal ions. The disproportionation of the phenoxyl radicals is significantly retarded by the electronic repulsion between the metal cation and a generated organic cation (Ln+), leading to stabilization of the radicals. On the other hand, divalent cations decelerate the rate of hydrogen atom abstraction from 10-methyl-9,10-dihydroacridine (AcrH2) and its 9-substituted derivatives (AcrHR) by the phenoxyl radicals. On the basis of primary kinetic deuterium isotope effects and energetic consideration of the electron-transfer step from AcrH2 to the phenoxyl radical-metal complexes, we propose that the hydrogen atom abstraction by the phenoxyl radical-alkaline earth metal complexes proceeds via electron transfer followed by proton transfer.  相似文献   

4.
A series of pyridine- and phenol-based ruthenium(II)-containing amphiphiles with bidentate ligands of the following types are reported: [(L(PyI))Ru(II)(bpy)(2)](PF(6))(2) (1), [(L(PyA))Ru(II)(bpy)(2)](PF(6))(2) (2), [(L(PhBuI))Ru(II)(bpy)(2)](PF(6)) (3), and [(L(PhClI))Ru(II)(bpy)(2)](PF(6)) (4). Species 1 and 2 are obtained by treatment of [Ru(bpy)(2)Cl(2)] with the ligands L(PyI) (N-(pyridine-2-ylmethylene)octadecan-1-amine) and L(PyA) (N-(pyridine-2-ylmethyl)octadecan-1-amine). The imine species 3 and 4 are synthesized by reaction of [Ru(bpy)(2)(CF(3)SO(3))(2)] with the amine ligands HL(PhBuA) (2,4-di-tert-butyl-6-((octadecylamino)methyl)phenol), and HL(PhClA) (2,4-dichloro-6-((octadecylamino)methyl)phenol). Compounds 1-4 are characterized by means of electrospray ionization (ESI(+)) mass spectrometry, elemental analyses, as well as electrochemical methods, infrared and UV-visible absorption and emission spectroscopies. The cyclic voltammograms (CVs) of 1-2 are marked by two successive processes around -1.78 and -2.27 V versus Fc(+)/Fc attributed to bipyridine reduction. A further ligand-centered reductive process is seen for 1. The Ru(II)/Ru(III) couple appears at 0.93 V versus Fc(+)/Fc. The phenolato-containing 3 and 4 species present relatively lower reduction potentials and more reversible redox behavior, along with Ru(II/III) and phenolate/phenoxyl oxidations. The interpretation of observed redox behavior is supported by density functional theory (DFT) calculations. Complexes 1-4 are surface-active as characterized by compression isotherms and Brewster angle microscopy. Species 1 and 2 show collapse pressures of about 29-32 mN·m(-1), and are strong candidates for the formation of redox-responsive monolayer films.  相似文献   

5.
Russian Chemical Bulletin - Antioxidant and antiglycating activities of 2,6-di-tert-butyl-4-[N-(4-pyridyl)iminomethyl]phenol (1), 2,6-di-tert-butyl-4-[N-(3-pyridylmethyl)-iminomethyl]phenol (2) and...  相似文献   

6.
Ohtsu H  Tanaka K 《Inorganic chemistry》2004,43(9):3024-3030
Low-spin nickel(II) complexes containing bidentate ligands with modulated nitrogen donor ability, Py(Bz)2 or MePy(Bz)2 (Py(Bz)2 = N,N-bis(benzyl)-N-[(2-pyridyl)methyl]amine, MePy(Bz)2 = N,N-bis(benzyl)-N-[(6-methyl-2-pyridyl)methyl]amine), and a beta-diketonate derivative, tBuacacH (tBuacacH = 2,2,6,6-tetramethyl-3,5-heptanedione), represented as [Ni(Py(Bz)2)(tBuacac)](PF6) (1) and [Ni(MePy(Bz)2)(tBuacac)](PF6) (2) have been synthesized. In addition, the corresponding high-spin nickel(II) complexes having a nitrate ion, [Ni(Py(Bz)2)(tBuacac)(NO3)] (3) and [Ni(MePy(Bz)2)(tBuacac)(NO3)] (4), have also been synthesized for comparison. Complexes 1 and 2 have tetracoordinate low-spin square-planar structures, whereas the coordination environment of the nickel ion in 4 is a hexacoordinate high-spin octahedral geometry. The absorption spectra of low-spin complexes 1 and 2 in a noncoordinating solvent, dichloromethane (CH2Cl2), display the characteristic absorption bands at 500 and 540 nm, respectively. On the other hand, the spectra of a CH2Cl2 solution of high-spin complexes 3 and 4 exhibit the absorption bands centered at 610 and 620 nm, respectively. The absorption spectra of 1 and 2 in N,N-dimethylformamide (DMF), being a coordinating solvent, are quite different from those in CH2Cl2, which are nearly the same as those of 3 and 4 in CH2Cl2. This result indicates that the structures of 1 and 2 are converted from a low-spin square-planar to a high-spin octahedral configuration by the coordination of two DMF molecules to the nickel ion. Moreover, complex 1 shows thermochromic behavior resulting from the equilibrium between low-spin square-planar and high-spin octahedral structures in acetone, while complex 2 exists only as a high-spin octahedral configuration in acetone at any temperature. Such drastic differences in the binding constants and thermochromic properties can be ascribed to the enhancement of the acidity of the nickel ion of 2 by the steric effect of the o-methyl group in the MePy(Bz)2 ligand in 2, which weakens the Ni-N(pyridine) bond length compared with that of the nonsubstituted Py(Bz)2 ligand in 1.  相似文献   

7.
Group 10 metal(II) complexes of H2tbu-salen (H2tbu-salen = N,N'-bis(3',5'-di-tert-butylsalicylidene)ethylenediamine) and H2tbu-salcn (H2tbu-salcn = N,N'-bis(3',5'-di-tert-butylsalicylidene)-1,2-cyclohexanediamine) containing two 2,4-di(tert-butyl)phenol moieties, [Ni(tbu-salen)] (1a), [Ni(tbu-salcn)] (1b), [Pd(tbu-salen)] (2a), [Pd(tbu-salcn)] (2b), and [Pt(tbu-salen)] (3), were prepared and structurally characterized by X-ray diffraction, and the electronic structures of their one-electron-oxidized species were established by spectroscopic and electrochemical methods. All the complexes have a mononuclear structure with two phenolate oxygens coordinated in a very similar square-planar geometry. These complexes exhibited similar absorption spectra in CH2Cl2, indicating that they all have a similar structure in solution. Cyclic voltammograms of the complexes showed a quasi-reversible redox wave at E1/2 = 0.82-1.05 V (vs Ag/AgCl), corresponding to formation of the relatively stable one-electron-oxidized species. The electrochemically oxidized or Ce(IV)-oxidized species of 1a, 2a, and 3 displayed a first-order decay with a half-life of 83, 20, and 148 min at -20 degrees C, respectively. Ni(II) complexes 1a and 1b were converted to the phenoxyl radicals upon one-electron oxidation in CH2Cl2 above -80 degrees C and to the Ni(III)-phenolate species below -120 degrees C. The temperature-dependent conversion was reversible with the Ni(III)-phenolate ground state and was found to be a valence tautomerism governed by the solvent. One-electron-oxidized 1b was isolated as [Ni(tbu-salcn)]NO3 (4) having the Ni(II)-phenoxyl radical ground state. One-electron-oxidized species of the Pd(II) complexes 2a and 2b were different from those of the Ni(II) complexes, the Pd(II)-phenoxyl radical species being the ground state in CH2Cl2 in the range 5-300 K. The one-electron-oxidized form of 2b, [Pd(tbu-salcn)]NO3 (5), which was isolated as a dark green powder, was found to be a Pd(II)-phenoxyl radical complex. On the other hand, the ESR spectrum of the one-electron-oxidized species of Pt(II) complex 3 exhibited a temperature-independent large g anisotropy in CH2Cl2 below -80 degrees C, while its resonance Raman spectrum at -60 degrees C displayed nu8a of the phenoxyl radical band at 1600 cm-1. These results indicated that the ground state of the Pt(II)-phenoxyl radical species has a large distribution of the radical electron spin at the Pt center. One-electron oxidation of 3 gave [Pt(tbu-salen)]NO3 (6) as a solid, where the oxidation state of the Pt center was determined to be ca. +2.5 from the XPS and XANES measurements.  相似文献   

8.
Novel neutral antimony(V) complexes were isolated as crystalline materials and characterized by IR and NMR spectroscopy: o-amidophenolate complexes [4,6-di-tert-butyl-N-(2,6-dimethylphenyl)-o-amidophenolato]triphenylantimony(V) (Ph3Sb[AP-Me], 1) and [4,6-di-tert-butyl-N-(2,6-diisopropylphenyl)-o-amidophenolato]triphenylantimony(v) (Ph3Sb[AP-iPr], 2); catecholate complexes (3,6-di-tert-butyl-4-methoxycatecholato)triphenylantimony(V) (Ph3Sb[(MeO)Cat], 3), its methanol solvate 3CH3OH (4); (3,6-di-tert-butyl-4,5-di-methoxycatecholato)triphenylantimony(V) (Ph3Sb[(MeO)2Cat], 5) and its acetonitrile solvate 5CH3CN (6). Complexes 1-7 were synthesized by oxidative addition of the corresponding o-iminobenzoquinones or o-benzoquinones to Ph3Sb. In the case of the phenanthrene-9,10-diolate (PhenCat) ligand, two different complexes were isolated: Ph3Sb[PhenCat] (7) and [Ph4Sb]+[Ph2Sb(PhenCat)2]- (8). Complexes 7 and 8 were found to be in equilibrium in solution. Molecular structures of 2, 4, 6, and 8 were determined by X-ray crystallography. Complexes 1-7 reversibly bind molecular oxygen to yield Ph3Sb[L-Me]O2 (9), Ph3Sb[L-iPr]O2 (10), Ph3Sb[(MeO)L']O2 (11), Ph3Sb[(MeO)2L']O2 (12) and Ph3Sb[PhenL']O2 (13), which contain five-membered trioxastibolane species (where L is the O,O',N-coordinated derivative of a 1-hydroperoxy-6-(N-aryl)-iminocyclohexa-2,4-dienol, and L' the O,O',O'-coordinated derivative of 6-hydroperoxy-6-hydroxycyclohexa-2,4-dienone). Complexes 9-13 were characterized by IR and 1H NMR spectroscopy and X-ray crystallography.  相似文献   

9.
To model the heterodinuclear active sites in plant purple acid phosphatases, a mononuclear synthon, [Fe(III)(H(2)IPCPMP)(Cl(2))][PF(6)] (1), has been generated in situ from the ligand 2-(N-isopropyl-N-((2-pyridyl)methyl)aminomethyl)-6-(N-(carboxylmethyl)-N-((2-pyridyl)methyl)amino methyl)-4-methylphenol (IPCPMP) and used to synthesize heterodinuclear complexes of the formulas [Fe(III)M(II)(IPCPMP)(OAc)(2)(CH(3)OH)][PF(6)] (M = Zn (2), Co (3), Ni (4), Mn (5)), [Fe(III)Zn(II)(IPCPMP)(mpdp)][PF(6)] (6) (mpdp = meta-phenylene-dipropionate), and [Fe(III)Cu(II)(IPCPMP) (OAc)}(2)(μ-O)][PF(6)] (7). Complexes 2-4, 6, and 7 have been crystallographically characterized. The structure of 6 is a solid state coordination polymer with heterodinuclear monomeric units, and 7 is a tetranuclear complex consisting of two heterodinuclear phenolate-bridged Fe(III)Cu(II) units bridged through a μ-oxido group between the two Fe(III) ions. Mo?ssbauer spectra confirm the presence of high spin Fe(III) in an octahedral environment for 1, 3, and 5 while 2 and 4 display relaxation effects. Magnetic susceptibility measurements indicate weak antiferromagnetic coupling for 3, 4, and 5 and confirm the assignment of the metal centers in 2-5 as high spin Fe(III)-M(II) (M = Zn, Co (high spin), Ni (high spin), Mn (high spin)). Complexes 2-5 are intact in acetonitrile solution as indicated by IR spectroscopy (for 2-4) and electrospray ionization mass spectrometry (ESI-MS) but partly dissociate to hydroxide species and a mononuclear complex in water/acetonitrile solutions. UV-vis spectroscopy reveal pH-dependent behavior, and species that form upon increasing the pH have been assigned to μ-hydroxido-bridged Fe(III)M(II) complexes for 2-5 although 2 and 3 is further transformed into what is propsed to be a μ-oxido-bridged tetranuclear complex similar to 7. Complexes 2-5 enhance phosphodiester cleavage of 2-hydroxy-propyl-p-nitrophenyl phosphate (HPNP) and bis(2,4-dinitrophenyl)phosphate (BDNPP), but the reactivities are different for different complexes and generally show strong pH dependence.  相似文献   

10.
The reaction of phenoxyl radicals with acids is investigated. 2,4,6-Tri-tert-butylphenoxyl radical (13), a persistent radical, deteriorates in MeOH/PhH in the presence of an acid yielding 4-methoxycyclohexa-2,5-dienone 18a and the parent phenol (14). The reaction is facilitated by a strong acid. Treatment of 2,6-di-tert-butyl-4-methylphenoxyl radical (2), a short-lived radical, generated by dissociation of its dimer, with an acid in MeOH provides 4-methoxycyclohexa-2,5-dienone 4 and the products from disproportionation of 2 including the parent phenol (3). A strong acid in a high concentration favors the formation of 4 while the yield of 3 is always kept high. Oxidation of the parent phenol (33) with PbO(2) to generate transient 2,6-di-tert-butylphenoxyl radical (35) in AcOH/H(2)O containing an added acid provides eventually p-benzoquinone 39 and 4,4'-diphenoquinone 42, the product from dimerization of 35. A strong acid in a high concentration favors the formation of 39. These results suggest that a phenoxyl radical is protonated by an acid and electron transfer takes place from another phenoxyl radical to the protonated phenoxyl radical, thus generating the phenoxyl cation, which can add an oxygen nucleophile, and the phenol (eq 5). The electron transfer is a fast reaction.  相似文献   

11.
Electron impact mass spectra of 2-(2-pyridyl)methylene-1,3-dicarbonyl compounds and related heteroaryl species have been investigated. In 3-(2-pyridyl)methylene-2,4-pentanedione, its 6′-methyl and 6′-methoxycarbonyl derivatives and in E- and Z-ethyl 3-oxo-2-(2-pyridyl)methylenebutanoates the base peak arises from the loss of methyl radical from the molecular ion to produce a 3-oxo-3H-indolizinium ion. A marked difference is observed in the behaviour of the geometric isomers of the keto esters. The diketones and E-keto ester carrying a 2-pyridyl substituent and ketone functionality on the same side of the carbon-carbon double bond exhibit an unusually high [M + 1]+/[M] ratio (about 2.5) under normal ionization conditions (pressure 10–100 μPa). This abnormality is a function of pressure only and independent of temperature. In the case of the Z-keto ester, the corresponding malonate, 3- and 4-(2-pyridyl)methylene-2,4-pentanediones, and 2-furyl, 2-thienyl and phenyl diketone analogues, the ratio does not differ much from that due to the natural isotope abundance. Results for 1,1,1,5,5,5-hexadeuterio-2-(2-pyridyl)-methylene-2,4-pentanedione (strong M + 2 peak) suggest one mass unit transfer as an intermolecular proton shift from a methyl group to give a 3-hydroxy-3-methyl-3H-indolizinium ion. This real mass spectrometric phenomenon is a unique example of low pressure self-chemical ionization.  相似文献   

12.
Neutral copper(II) and zinc(II) complexes of the mono- and dinucleating Schiff base ligands (2,4-di-tert-butyl-6-({2-[(3,5-di-tert-butyl-2-hydroxy-benzylidene)-amino]-phenylimino}-methyl)-phenol) and (2,4-di-tert-butyl-6-({2,4,5-tri-[(3,5-di-tert-butyl-2-hydroxy-benzylidene)-amino]-phenylimino}-methyl)-phenol) respectively were synthesized and characterized. The monometallic complex can be oxidized into a mono and a dication, while oxidation of the dimetallic one affords up to a tetracation. Whatever the ligand and metal are, oxidation takes place at the phenolate moieties, which were oxidized into coordinated phenoxyl radicals, i.e. the oxidation locus is not correlated to the ligand nuclearity. These results could be rationalized with previous ones by considering the hybridization of the coordinating nitrogens and the nature of the O-donor groups.  相似文献   

13.
A series of Ni(II) carboxylate complexes, supported by a chelate ligand having either secondary hydrophobic phenyl groups (6-Ph2TPA, N,N-bis((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine) or hydrogen bond donors (bnpapa, N,N-bis((6-neopentylamino-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine), have been prepared and characterized. X-ray crystallographic studies of [(6-Ph2TPA)Ni(O2C(CH2)2SCH3)]ClO4.CH2Cl2 (4.CH2Cl2) and [(6-Ph2TPA)Ni(O2CCH2SCH3)]ClO(4).1.5CH2Cl2 (5.1.5CH2Cl2) revealed that each complex contains a distorted octahedral Ni(II) center and a bidentate carboxylate ligand. A previously described benzoate complex ([(6-Ph2TPA)Ni(O2CPh)]ClO4 (3)) has similar structural characteristics. Recrystallization of dry powdered samples of 3, 4.0.5CH2Cl2, and 5 from wet organic solvents yielded a second series of crystalline Ni(II) carboxylate complexes having a coordinated monodentate carboxylate ligand ([(6-Ph2TPA)Ni(H2O)(O2CPh)]ClO4 (6), [(6-Ph2TPA)Ni(H2O)(O2C(CH2)2SCH3)]ClO4.0.2CH2Cl2 (7.0.2CH2Cl2), [(6-Ph2TPA)Ni(H2O)(O2CCH2SCH3)]ClO4 (8)) which is stabilized by a hydrogen-bonding interaction with a Ni(II)-bound water molecule. In the cationic portions of 7.0.2CH2Cl2 and 8, weak CH/pi interactions are also present between the methylene units of the carboxylate ligands and the phenyl appendages of the 6-Ph2TPA ligands. A formate complex of the formulation [(6-Ph2TPA)Ni(H2O)(O2CH)]ClO4 (9) was isolated and characterized. The mononuclear Ni(II) carboxylate complexes [(bnpapa)Ni(O2CPh)]ClO4 (10), [(bnpapa)Ni(O2C(CH2)2SCH3)]ClO4 (11), [(bnpapa)Ni(O2CCH2SCH3)]ClO4 (12), and [(bnpapa)Ni(O2CH)]ClO4 (13) were isolated and characterized. Two crystalline solvate forms of 10 (10.CH3CN and 10.CH2Cl2) were examined by X-ray crystallography. In both, the distorted octahedral Ni(II) center is ligated by a bidentate benzoate ligand, one Ni(II)-bound oxygen atom of which accepts two hydrogen bonds from the supporting bnpapa chelate ligand. Spectroscopic studies of 10(-13) suggest that all contain a bidentate carboxylate ligand, even after exposure to water. The combined results of this work enable the formulation of a proposed pathway for carboxylate product release from the active site Ni(II) center in acireductone dioxygenase.  相似文献   

14.
The title compound (1) oxidizes 2,6-di-tert-butylphenol (2), 2,6-di-tert-butyl-4-methylphenol (3), 2,6-di-tert-butyl-4-(dipnenylmethyl)phenol (4), and p-naphthol (5), to quinones in good yield under mild conditions in acetonitrile. For unsubstituted phenols the reaction takes place in two ways, phenol (6) is oxidized to quinhydrone (7), while the oxidation products of the phenols, α-naphthol, catechol and 2,4-dihydroxyl-naphthol were only polymers.  相似文献   

15.
Cp*ZrMe3 reacts with silica pretreated at 800 degrees C, SiO(2-(800)) through two pathways: (a) protolysis of a Zr-Me group by surface silanols and (b) transfer of a methyl group to the surface by opening of strained siloxane bridges, in a relative proportion of ca. 9/1, respectively, affording a well-defined surface species [([triple bond]SiO)ZrCp*(Me)2], 3, but with two different local environments 3a, [([triple bond]SiO)ZrCp*(Me)2][[triple bond]Si-O-Si[triple bond]], and the other with 3b, [structure: see text]. The reaction of the species 3 with B(C6F5)3 is controlled by this local environment and gives three surface species [([triple bond]SiO)ZrCp*(Me)](+)[MeB(C6F5)3]- [[triple bond]Si-O-Si[triple bond]], 4a (20%), [([triple bond]SiO)ZrCp*(Me)](+)[(Me)B(C6F5)3]- [[triple bond]Si-Me], 4b (10%), and [([triple bond]SiO)2ZrCp*](+)[(Me)B(C6F5)(3)](-)[[triple bond]Si-O-Si[triple bond]], 5 (70%). On the contrary, the reaction of Cp*Zr(Me)3, Cp2Zr(Me)2 with [[triple bond]SiO-B(C6F5)3](-)[HNEt2Ph]+, 6, leads to a unique species [([triple bond]SiO)B(C6F5)3](-)[Cp*Zr(Me)2.NEt2Ph]+, 7, and [([triple bond]SiO)ZrCp2](+)[(Me)B(C6F5)3]-, 9 respectively. The complexes 4 and 7 are active catalysts in ethylene polymerization at room temperature, 93 and 67 kg PE mol Zr1- atm(-1) bar(-1), respectively, indicating that covalently bounded Zr catalyst 4 is slightly more active than the "floating" cationic catalyst 7.  相似文献   

16.
The Pd(II) complex [PdCl(2)(1)] [1 = ({oxazolin-2-yl}methyl)diphenylphosphine] was obtained by the 1:1 reaction of 1 with [PdCl(2)(NCPh)(2)]. Although this neutral complex is stable in the solid-state and in solution, it reacts with the dinuclear complex [CoCl(2)(μ-1)](2) to afford the heterometallic zwitterionic complex [{PdCl(1)}(+)(μ-1)(CoCl(3))(-)] (2). Under inert atmosphere, two equivalents of 1 reacted with [NiCl(2)(dme)] to give trans-[NiCl(2)(1)(2)] (3) in CH(2)Cl(2) but cis-[NiCl(2)(1)(2)] (4) in CHCl(3). When the latter reaction was performed in air, trans-[NiCl(2)(5)(2)] (6) [5 = ({oxazolin-2-yl}methyl)diphenylphosphine oxide] was obtained. All metal complexes, 2, 3, 4 and 6, have been structurally characterized by X-ray diffraction. Complexes 3, 4 and 6 have been evaluated as precatalysts for ethylene oligomerisation in the presence of AlEtCl(2) as cocatalyst. Complexes 3 and 6 yielded a turnover frequency (TOF) of 60,700 and 62,600 mol of C(2)H(4)/((mol of Ni)·h), respectively, in the presence of 10 equiv. of AlEtCl(2). In the presence of only 6 equiv. of cocatalyst, these Ni complexes yielded TOF values of 41,500 and 58,000 mol of C(2)H(4)/((mol of Ni)·h), respectively.  相似文献   

17.
The synthesis and characterization of six novel mononuclear Mn(II) and Mn(III) complexes are presented. The tripodal ligands 2-((bis(pyridin-2-ylmethyl)amino)methyl)-4-nitrophenol (HL1), 2-[[((6-methylpyridin-2-yl)methyl)(pyridin-2-ylmethyl)amino]methyl]-4-nitrophenol (HL2), (2-pyridylmethyl)(6-methyl-2-pyridylmethyl)(2-hydroxybenzyl)amine (HL3) and 2-((bis(pyridin-2-ylmethyl)amino)methyl)-4-bromophenol were used. All ligands provide an N3O donor set. The compounds [Mn(II)(HL1)Cl2].CH3OH (1), [Mn(III)(L1)Cl2] (2), [Mn(II)(HL2)(EtOH)Cl2] (3), [Mn(II)(HL3)Cl2].CH3OH (4), [Mn(III)(HL4)Br2] (5) and [Mn(III)(L1)(tcc)] (6), with tcc = tetrachlorocatecholate dianion, were synthesized and characterized by various techniques such as X-ray crystallography, mass spectrometry, IR and UV-vis spectroscopy, cyclic voltammetry, and elemental analysis. Compound 1 crystallizes in the triclinic space group P1, compounds 2, 3 and 4 were solved in the monoclinic space group P2(1)/c, whereas the structure determination of and succeeded in the orthorhombic space groups Pbca and P2(1)2(1)2(1), respectively. Notably, the crystal structures of 1 and 3 are the first Mn(II) complexes featuring a non-coordinating phenol moiety. Compound 2 oxidizes 3,5-di-tert-butylcatechol to 3,5-di-tert-butylquinone exhibiting saturation kinetics at high substrate concentrations with a turnover number of kcat = 173 h(-1). The electronic influence of different substituents in para position of the phenol group is lined out.  相似文献   

18.
以2-[1,2-二(2-羟基苯甲氨基)-2-(吡啶基)乙基]苯酚和2-[1,2-二(2-羟基苯甲氨基)-4-(吡啶基)乙基]苯酚为原料,分别与乙二醛经缩合反应,合成了两个新型的哌嗪化合物--2-【{12-(2-吡啶基)-3,20-二氧-11,21-二氮杂五环[11.7.1.O2,11.O4,9.O14,19]二十一-4,6,8,14,16,18-六环-21-基}甲基】苯酚(2a)和2-【{12-(4-吡啶基)-3,20-二氧-11,21-二氮杂五环[11.7.1.O2,11.O4,9.O14,19]二十一-4,6,8,14,16,18-六环-21-基}甲基】苯酚(2b),其结构经1H NMR, 13C NMR, FT-IR, ESI-MS和X-射线单晶衍射表征。2a(CCDC: 1 439 422)属单斜晶系,空间群P21/n,晶胞参数a=12.250 2(16) , b=10.299 6(13) , c=18.296(2) , β=95.798(2)°, V=2 296.6(5) 3, Dc=1.341 mg·cm-3,Z=4, F(000)=976, μ=0.088 mm-1。  相似文献   

19.
Oxidation of tin(IV) o-amidophenolate complexes [Sn(ap)Ph(2)] (1) and [Sn(ap)Et(2)(thf)] (2) (ap=dianion of 4,6-di-tert-butyl-N-(2,6-diisopropylphenyl)-o-iminobenzoquinone (ImQ)) with molecular oxygen and sulfur in toluene solutions was investigated. The reaction of oxygen with 1 at room temperature forms a paramagnetic derivative [Sn(isq)(2)Ph(2)] (3) (isq=radical anion of ImQ) and diphenyltin(IV) oxide [{Ph(2)SnO}(n)]. Interaction of 1 with sulfur gives another monophenyl-substituted paramagnetic tin(IV) complex, [Sn(ap)(isq)Ph] (4), and the sulfide, [Ph(3)Sn](2)S. The oxidation of 2 with oxygen and with sulfur proceeds through the derivative [Sn(isq)(2)Et(2)] (7), which undergoes alkyl elimination to give two new tin(IV) compounds, [Sn(ap)(isq)Et] (5) and [Sn(ap)(EtImQ)Et] (6) (EtImQ=2,4-di-tert-butyl-6-(2,6-diisopropylphenylimino)-3-ethylcyclohexa-1,4-dienolate ligand), respectively, along with the corresponding alkyltin(IV) oxide and sulfide. Complexes 3-5 and 7 were studied by EPR spectroscopy. The structures of 3, 4 and 6 were investigated by X-ray analysis.  相似文献   

20.
Reactions between hindered silicon-containing phenols and C6H5HgOH have been studied. These reactions, as shown by ESR-spectra, proceed via the intermediate formation of phenoxyls ansing from an electron transfer from the phenol to the phenylmercury cation. In the reactions of C6H5HgOH with silicon-containing phenols [2,6-bis(trimethylsilyl)-4-tert-butyl-, 2,4-bis(trimethylsilyl)-6-tert-butyl-, and 2-phenyldimethylsilyl-4,6-di-tert-butyl-phenols] which have ortho-triorganosilyl group capable of migrating to the phenoxyl oxygen, mercurated products have been formed. In the interaction between C6H5HgOH and 2,6-di-tert-butyl-4-trimethylsilylphenol, which has a para-trimethylsilyl group which is unable to migrate to the oxygen, no mercurization occurs; phenol oxidation only was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号