首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
本文采用第一性原理方法, 在190 GPa的压力范围内, 计算了BaLiF3理想晶体和含空位点缺陷晶体的光学性质. 吸收谱数据表明, 压力因素不会导致BaLiF3晶体在可见光区有光吸收的行为. 空位点缺陷的存在会使得BaLiF3的吸收边红移(其中氟空位点缺陷引起的红移最显著) , 但这些红移不会导致它在可见光区内出现光吸收的现象. 波长在532 nm处的折射率数据显示, BaLiF3的折射率将随压力升高而增大. 氟空位点缺陷将导致BaLiF3的折射率增大, 但钡空位点缺陷和锂空位点缺陷的存在对其基本没有影响. 本文预测, BaLiF3晶体有成为冲击光学窗口材料的可能.  相似文献   

2.
本文采用第一性原理的方法,在100 GPa的压力范围内,计算了KMgF_3的理想晶体和含空位缺陷晶体的光学性质.吸收谱数据表明,在100 GPa范围内,压力因素不会导致KMgF_3晶体在可见光区有光吸收行为.钾、镁和氟空位缺陷的存在会使得KMgF_3晶体的吸收边红移(其中氟空位缺陷引起的红移最显著),但这些红移不会导致它在可见光区出现光吸收的现象.能量损失谱数据显示,压力因素不仅会使得KMgF_3晶体的能量损失谱有蓝移的行为,而且还会引起它的较强谱峰个数发生变化.在100 GPa处的缺陷晶体数据指明,氟空位缺陷会导致其能量损失谱的两个较强谱峰的峰值强度明显降低.分析表明,KMgF_3晶体有成为冲击窗口材料的可能,并且本文所获得的结果对未来的实验探究有参考作用.  相似文献   

3.
蔡鲁刚 《计算物理》2018,35(3):350-356
基于密度泛函理论的广义梯度近似对畸形钙钛矿DyMnO3的基态电子结构及光学性质进行计算和分析.结果表明优化的晶体结构参数与实验结果相符合,DyMnO3具有非间接带隙大小为0.91 eV的能带结构,结合态密度分析了各元素价电子态的分布.计算分析包括介电常数,吸收系数,反射率等光学性质.  相似文献   

4.
基于密度泛函理论和赝势平面波方法研究了立方钙钛矿RbZnF3的电子结构和光学性质;利用静水有限应变技术计算研究了RbZnF3弹性常数Cij、体积弹性模量B和剪切模量G随压力的变化关系。基态下,RbZnF3晶格常数a和体积弹性模量B0计算值与实验值以及其他理论值一致。根据能带结构、总态密度以及分波态密度分析可知:基态下立方钙钛矿结构RbZnF3为间接带隙半导体材料,带隙为3.57eV,与其他计算结果比较,本文计算结果偏低,这是由于局域密度近似(LAD)或广义梯度近似(GGA)交换关联函数的局限性所致。基态下RbZnF3的Mulliken电荷分布和集居数说明:RbZnF3属于共价键和离子键所形成的混合键化合物;RbZnF3的电荷总数主要来源于Rb 4s和4p轨道,Zn 3d轨道,以及F 2s和2p轨道。电荷主要从Rb, Zn原子向F原子转移。同时,本文还计算研究了RbZnF3的光学介电函数、吸收系数、复折射率、能量损失谱和反射系数等光学性质。  相似文献   

5.
从第一性原理出发,在局域密度近似下,采用基于密度泛函理论的平面波超软赝势计算方法系统地研究了高压对BaHfO3电子结构与光学性质的影响.能带结构分析表明:无压强和施加正压强作用时,BaHfO3为直接带隙绝缘体,而施加负压强时,BaHfO3则转变为间接带隙半导体;BaHfO3的带隙随压强增加而减小,且具有明显的非线性关系.对光学性质的分析发现:施加正压强后,光学吸收带边产生蓝移;负压强作用时介电函数虚部尖峰减少,光学吸收带边产生红移;施加压强后BaHfO3的静态介电常数和静态折射率均增大.上述研究表明施加高压有效调制了BaHfO3的电子结构和光学性质,计算结果为BaHfO3光电材料的设计与应用提供了理论依据.  相似文献   

6.
本文采用第一性原理方法,在100 GPa的压力范围内, 计算了LiYF4理想晶体和含空位点缺陷晶体的光学性质.吸收谱数据表明,在100 GPa范围内,压力和相变因素的存在不会改变LiYF4晶体在250-1000 nm的波段内没有光吸收的事实. 氟、钇空位点缺陷的出现会使得LiYF4的吸收边蓝移,而锂空位点缺陷将导致它的吸收边微弱红移(但在250-1000 nm的波段内它仍不具有光吸收行为).波长在532 nm处的折射率数据显示, 在LiYF4的三个结构相区,其折射率均随压力的增加而增大. LiYF4从白钨矿结构到褐钇铌矿结构的相变会使得其折射率略微增加,但从褐钇铌矿结构到类黑钨矿结构的相变将导致其折射率显著降低. 同时,空位缺陷的存在将引起LiYF4的折射率明显增大. 分析指明,LiYF4有成为冲击窗口材料的可能. 本文所获得的信息对未来的实验研究有参考作用.  相似文献   

7.
利用基于密度泛函理论的第一性原理超软赝势平面方法研究了外界压强对LiNbO3晶体波态密度,能带结构,电荷密度以及光学性质的影响.能带结构计算表明,价带顶主要由O-2p和Nb-4d态电子贡献,导带底主要由Nb-4d态电子贡献,且带隙随着压强的增加而线性增大.利用复介电函数计算了LiNbO3晶体在不同压强下光学性质的折射率、反射率、吸收系数,能量损失函数以及光电导率. 研究发现:外界压强大于10Gpa时,静态折射率保持不变,随外界压强的增加,反射率、吸收函数以及光电导率区间有一定程度的拓宽,损失函数峰发生“蓝移”.研究表明,高压可以有效调控LiNbO3晶体的电子结构和光学性质,为LiNbO3晶体的高压应用提供了有益的理论依据.  相似文献   

8.
利用基于密度泛函理论的第一性原理超软赝势平面方法研究了外界压强对LiNbO_3晶体态密度,能带结构,电荷密度以及光学性质的影响.能带结构计算表明,价带顶主要由O-2p和Nb-4d态电子贡献,导带底主要由Nb-4d态电子贡献,且带隙随着压强的增加而线性增大.利用复介电函数计算了LiNbO_3晶体在不同压强下光学性质的折射率、反射率、吸收函数,能量损失函数以及光电导率.研究发现:外界压强大于10GPa时,静态折射率保持不变,随外界压强的增加,反射率、吸收函数以及光电导率区间有一定程度的拓宽,损失函数峰发生"蓝移".研究表明,外界高压可以有效调控LiNbO_3晶体的电子结构和光学性质,为LiNbO_3晶体的高压应用提供了有益的理论依据.  相似文献   

9.
利用基于密度泛函理论的第一性原理方法,计算了在压力作用下CaF2的结构相变和光学性质。结果证实了CaF2的压致结构转变的顺序是从氟石结构(空间群Fm3m)转变到PbCl2型结构(空间群Pnma),然后继续转变为Ni2In型结构(空间群P63/mmc)。在Fm3m和Pnma两种结构中,电子带隙随着压力的增加而增加,而在P63/mmc结构中,带隙随着压力的增加开始下降。实验结果显示,直到210 GPa,CaF2没有发生由绝缘体到金属的转变。据此推测,CaF2的金属化压力高于300 GPa。还讨论了压力对CaF2光学性质的影响。  相似文献   

10.
赵佰强  张耘  邱晓燕  王学维 《物理学报》2016,65(1):14212-014212
利用基于密度泛函理论的第一性原理对Cu,Fe单掺及共掺LiNbO_3晶体的电子结构和光学性质进行了计算.结果显示:Cu,Fe单掺杂LiNbO_3晶体禁带内均产生了杂质能级,主要由Cu3d,Fe3d轨道及O 2p轨道贡献;共掺LiNbO_3晶体禁带内出现了双能级结构,深能级由Cu3d和O2p轨道贡献,浅能级由Fe3d和O2p轨道贡献.Cu,Fe单掺和共掺LiNbO_3晶体带隙依次缩小,在可见光区的光吸收明显增强.共掺LiNbO_3在445和630nm左右分别表现出一个宽吸收峰,比单掺LiNbO_3晶体表现出更好的光吸收性质.研究表明,Fe占Nb位比Fe占Li位的双掺样品在双光存储应用中更有优势;同时,浓度比[Fe2+]/[Fe3+]值的适当降低有助于这种优势的形成.  相似文献   

11.
郑树文  范广涵  张涛  皮辉  徐开放 《物理学报》2014,63(8):87101-087101
利用密度泛函理论的平面波超软赝势方法,对纤锌矿T M_(0.125)Zn_(0.875)O(TM=Be,Mg)合金和Ga掺杂T M_(0.125)Zn_(0.875)O的结构参数、能带、电子态密度和光学能隙进行计算和分析,结果表明:T M_(0.125)Zn_(0.875)O掺入Ga容易实现并且结构更稳定,T M_(0.125)Zn_(0.875)O合金掺Ga能获得很好的n型材料改性,能隙由导带底Ga 4s态和价带顶O 2p态决定,由于Bllrstein-Moss移动和多体效应,Ga掺杂后的T M_(0.125)Zn_(0.875)O光学能隙变大,这与实验结果相一致,T M_(0.125)Zn_(0.875)O掺Ga材料可作透明导电薄膜应用到紫外和深紫外光电子器件中。  相似文献   

12.
 用阻抗匹配法和电探针技术在48~140 GPa冲击压力范围内对化学组分为(Mg0.92, Fe0.08)SiO3、初始密度为3.06 g/cm3的天然顽火辉石进行了冲击压缩实验。根据本工作13发实验数据,结合McQueen等人的数据可以看出,(Mg0.92, Fe0.08)SiO3顽火辉石在冲击压缩过程中,大约经历三个明显区域:低压相区,压力范围为0~40 GPa;混合相区,压力范围为40~67 GPa;高压相区,压力范围为68~140 GPa。在低压相区,D-u关系已由McQueen给出;而在高压相区(68~140 GPa),可由本实验数据得到。由叠加原理计算得到的混合物(Mg0.92, Fe0.08)O(Mw)+SiO2(St)的D-u关系及p-ρ关系曲线明显偏离了实验数据的拟合曲线,从而排除了在高达140 GPa冲击压力下,钙钛矿结构的(Mg0.92, Fe0.08)SiO3发生向氧化物化学分解相变的可能性。对高压相区的实验数据进行拟合,可以得到(Mg0.92, Fe0.08)SiO3钙钛矿的Grüneisen参数γ。通过三阶Birch-Murnaghan有限应变状态方程,由冲击波实验数据得到了零压等熵体积模量K0S=259.6(9) GPa及其对压力的一阶偏导数K′0S=4.20(5),其ρ0=4.19 g/cm3。(Mg0.92, Fe0.08)SiO3钙钛矿冲击压缩下的密度数据与PREM密度剖面吻合很好,支持钙钛矿为主要成分的下地幔模型。  相似文献   

13.
从第一性原理出发,在局域密度近似下,采用基于密度泛函理论的平面波超软赝势计算方法系统地研究了高压对BaHfO3电子结构与光学性质的影响.能带结构分析表明;无压强和施加正压强作用时,BaHfO3为直接带隙绝缘体,而施加负压强时,BaHfO3则转变为间接带隙半导体;BaHfO3的带隙随压强增加而减小,且具有明显的非线性关系.对光学性质的分析发现:施加正压强后,光学吸收带边产生蓝移;负压强作用时介电函数虚部尖峰减少,光学吸收带边产生红移;施加压强后BaHfO3的静态介电常数和静态折射率均增大.上述研究表明施加高压有效调制了BaHfO3的电子结构和光学性质,计算结果为BaHfO3光电材料的设计与应用提供了理论依据.  相似文献   

14.
本文利用密度泛函理论中的广义梯度近似对碳化钨晶体的三种结构(碳化钨相、闪锌矿相以及纤锌矿相)进行了优化,得到能量最低的稳定构型,并在此基础上计算了它的力学、电子、光学和高温高压下的热力学性质.研究表明:在0~300 GPa压力范围内,碳化钨相具有最高的稳定性.同时,高压下碳化钨相的弹性常数满足Born-Huang准则,且0 GPa和300 GPa下的声子色散没有虚频,证明了高压下碳化钨相的静力学稳定性和动力学稳定性.电子性质表明了碳化钨的金属性.光学性质表明碳化钨在高能区很难吸收光.热力学性质的研究表明:体积比V/V_0对压强的变化更敏感;高温时C_V曲线近似一条直线;给定压强下热膨胀系数α在600 K温度以上增长非常缓慢;压强对德拜温度Θ_D的影响较大;在低压下格林艾森系数γ的变化较大.  相似文献   

15.
采用基于密度泛函理论(DFT)的第一性原理方法,计算了Al_2O_3晶体在高压下的光学性质.结果表明:(1)Al_2O_3从CaIrO_3结构转变为U_2S_3结构:将使得其吸收谱主峰值强度增强、副峰值强度显著减弱、主副谱峰均红移以及光谱吸收边出现巨大的红移.(2)结构相变将引起Al_2O_3折射率谱峰值强度减弱和谱峰数增加;同时,在波长为400-2000 nm的范围内,结构相变将导致Al_2O_3折射率显著增大.本文的计算结果为未来进一步的实验研究提供了参考信息.  相似文献   

16.
全无机无铅卤化物钙钛矿已经成为重要的新一代太阳能电池材料.采用密度泛函理论的第一性原理研究了不同静水压下CsSnX3(X=I, Br, Cl)材料的晶体结构,电子结构和光学性能,并分析了其内在联系.结果表明施加静水压可使材料中Sn-X键长减小,使原子之间的耦合增强,带隙值减小,且随着卤族元素半径的增大,压力效应越明显;随着压力的增加,材料的吸收系数和复折射率增大,吸收光谱出现红移现象,在可见光区和近红外光区吸收增强.相比CsSnBr3和CsSnCl3,CsSnI3在可见光区吸收最佳且受压力作用影响最小,更适用于钙钛矿太阳能电池材料.  相似文献   

17.
采用基于密度泛函理论(DFT)的第一性原理方法, 计算了AlN理想晶体和含铝、氮空位点缺陷晶体在100 GPa压力范围内的光学性质. 波长在532 nm处的折射率计算结果表明:AlN从纤锌矿结构相转变为岩盐矿结构相将导致其折射率增加; 铝空位缺陷将引起AlN岩盐矿结构相的折射率增大, 而氮空位缺陷却导致其折射率降低. 能量损失谱计算数据指明:结构相变使得AlN能量损失谱蓝移、主峰峰值强度增强;铝和氮空位缺陷将导致AlN岩盐矿结构相的能量损失谱主峰进一步蓝移、峰值强度再次增强. 计算预测的结果将为进一步的实验探究提供理论参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号