首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Current quantum cryptography systems are limited by the attenuated coherent pulses they use as light sources: a security loophole is opened up by the possibility of multiple-photon pulses. By replacing the source with a single-photon emitter, transmission rates of secure information can be improved. We have investigated the use of single self-assembled InAs/GaAs quantum dots as such single-photon sources, and have seen a tenfold reduction in the multi-photon probability as compared to Poissonian pulses. An extension of our experiment should also allow for the generation of triggered, polarization-entangled photon pairs. The utility of these light sources is currently limited by the low efficiency with which photons are collected. However, by fabricating an optical microcavity containing a single quantum dot, the spontaneous emission rate into a single mode can be enhanced. Using this method, we have seen 78% coupling of single-dot radiation into a single cavity resonance. The enhanced spontaneous decay should also allow for higher photon pulse rates, up to about 3 GHz. Received 8 July 2001 and Received in final form 25 August 2001  相似文献   

2.
We theoretically investigate the optical response of a quantum dot, embedded in a microcavity and incoherently excited by pulsed pumping. The exciton and biexciton transitions are off-resonantly coupled with the left- and right-polarized mode of the cavity, while the two-photon resonance condition is fulfilled. Rich behaviors are shown to occur in the time dependence of the second-order correlation functions which refer to counter-polarized photons. The system’s dynamics turns out to be much faster than typical experimental detection times. The experimentally accessible time-averaged quantities confirm that such a dot-cavity system behaves as a good emitter of single polarization-correlated photon pairs.  相似文献   

3.
Single-Photon Emission from a Single InAs Quantum Dot   总被引:1,自引:0,他引:1       下载免费PDF全文
Excitation power-dependent micro-photoluminescence spectra and photon-correlation measurement are used to study the optical properties and photon statistics of single InAs quantum dots. Exciton and biexciton emissions, whose photoluminescence intensities have linear and quadratic excitation power dependences, respectively, are identified. Under pulsed laser excitation, the zero time delay peak of second order correlation function corresponding to exciton emission is well suppressed, which is a clear evidence of single photon emission.  相似文献   

4.
We show that the carrier “antibinding” observed recently in semiconductor quantum dots, i.e., the fact that the ground state energy of two electron-hole pairs goes above twice the ground-state energy of one pair, can entirely be assigned to a charge separation effect, whatever its origin. In the absence of external electric field, this charge separation comes from different “spreading-out” of the electron and hole wavefunctions linked to the finite height of the barriers. When the dot size shrinks, the two-pair energy always stays below when the barriers are infinite. On the opposite, because barriers are less efficient for small dots, the energy of two-pairs in a dot with finite barriers, ends by behaving like the one in bulk, i.e., by going above twice the one-pair energy when the pairs get too close. For a full understanding of this “antibinding” effect, we have also reconsidered the case of one pair plus one carrier. We find that, while the carriers just have to spread out of the dot differently for the “antibinding” of two-pairs to appear, this “antibinding” for one pair plus one carrier only appears if this carrier is the one which spreads out the less. In addition a remarkable sum rule exists between the “binding energies” of two pairs and of one pair plus one carrier.  相似文献   

5.
Two independent photons, produced through the spontaneous emission of two separate emitters subject to uncorrelated dephasing processes, can display two-photon interference (i.e. coalescence into a two-photon state) when they are incident simultaneously on a beamsplitter, in a manner analogous to that of twin photons produced through degenerate parametric fluorescence. The presence of dephasing processes, however, reduces the interference contrast (i.e. the probability of coalescence), by the ratio of the coherence time to the lifetime of the emitter. Received 9 September 2002 Published online 17 December 2002 RID="a" ID="a"e-mail: izo.abram@lpn.cnrs.fr  相似文献   

6.
Polarization properties of single photons emitted by optical pumping from a single quantum dot ( QD) are studied by using a four-level system model. The model is capable of explaining the polarization uncertainty observed in single photon emission experiments. It is found that the dependence of photon emission efficiency and polarization visibility on pump power are opposite in general cases. By employing QDs with small size and strong carrier confinement, the photon polarization visibility under high pump power can be improved. In addition, embedding a QD into a well designed microcavity is also found to be favourable, whereas the trade-off between high polarization visibility and multi-photon emission is noted.  相似文献   

7.
We propose a deterministic scheme for generation of highly entangled photon states using a high-Q two-mode optical cavity and the dark state evolution. Because of the adiabatic operation, our proposal is robust to ambient noise, and the relevant dynamics is insensitive to the randomness of moderate fluctuations regarding experimental parameters. Our scheme not only works deterministically, but also has the advantage of achieving highly entangled photons by adiabatically increasing or decreasing the Rabi frequencies regarding the classical driving pulses, which would be practical in real implementation. Our scheme can also be extended to generation of multiphoton entanglement.  相似文献   

8.
A variational formalism for the calculation of the binding energies of hydrogenic donors in a parabolic diluted magnetic semiconductor quantum dot is discussed. Results are obtained for Cd Mn Te/Cd Mn Te structures as a function of the dot radius in the presence of external magnetic and electric fields applied along the growth axis. The donor binding energies are computed for different field strengths and for different dot radii. While the variation of impurity binding energy with dot radii and electric field are as expected, the polarizability values enhance in a magnetic field. However, for certain values of dot radii and in intense magnetic fields the polarizability variation is anomalous. This variation of polarizability is different from non- magnetic quantum well structures. Spin polaronic shifts are estimated using a mean field theory. The results show that the spin polaronic shift increases with magnetic field and decreases as the electric field and dot radius increase.  相似文献   

9.
The photoluminescence correlation from a single CdSe nanocrystal under pulsed excitation is studied, and a single photon is realized at wavelength 655 nm at room temperature. The single colloidal CdSe quantum dot is prepared on a SiO2/silicon surface by a drop-and-drag technique. The long-term stability of the single-photon source is investigated; it is found that the antibunching effect weakens with excitation time, and the reason for the weakening is attributed to photobleaching. The lifetimes of photoluminescence from a single quantum dot are analyzed at different excitation times. By analyzing the probability distribution of on and off times of photoluminescence, the Auger assisted tunneling and Auger assisted photobleaching models are applied to explain the antibunching phenomenon.  相似文献   

10.
We study the coherent transport in a one-dimensional lead with two side-coupled quantum dots using the Keldysh’s Green function formalism.The effect of the interdot Coulomb interaction is taken into account by computing the firstand second order contributions to the self-energy.We show that the Fano interference due to the resonance of one dotis strongly affected by the fixed parameters that characterize the second dot. If the second dot is tuned close to resonance an additionalpeak develops between the peak and dip of the Fano line shape of the current. In contrast, when the second dotis off-resonance and its occupation number is close to unity the interdot Coulomb interaction merely shifts the Fano line and no other maxima appear.The system we consider is more general than the single-dot interferometer studied experimentally by Kobayashi et al. [Phys. Rev. B 70, 035319 (2004)] and may be used for controlling quantum interference and studying decoherence effects in mesoscopic transport.  相似文献   

11.
We demonstrate the principle of complementarity in quantum mechanics in a single-photon interference experiment. Single photons are provided by isolated, optically pumped nitrogen-vacancy centers in diamond, which can be easily addressed by confocal microscopy. In order to observe the particle-like behavior of photons, we perform an elementary Welcher-Weg measurement, detecting photons behind a beam splitter. In contrast, if we dispense with this Welcher-Weg information, we observe interference fringes with a visibility of about 96%, revealing the wave nature of the photon. Received: 29 August 2002 / Revised version: 12 December 2002 / Published online: 26 February 2003 RID="*" ID="*"Corresponding author. Fax +49-89/2180-5032, E-mail: Harald.Weinfurter@physik.uni-muenchen.de  相似文献   

12.
The quantum interference and Rabi oscillation of a V-type three-level system with two orthogonal sub-states in an elongated semiconductor quantum dot are discussed theoretically with optical Bloch equations when the system is driven by pulse-pair. Numerical calculations from the optical Bloch equations reveal that the quantum interference in the system is enhanced with the increasing of the energy decay or splitting. Furthermore, the populations swapping in two orthogonal sub-states can be realized though the direct transition is prohibited.  相似文献   

13.
We present a study of the primary optical transitions and recombination dynamics in InGaAs self-assembled quantum nanostructures with different shape. Starting from the same quantum dot seeding layer, and depending on the overgrowth conditions, these new nanostructures can be tailored in shape and are characterized by heights lower than 2 nm and base lengths around 100 nm. The geometrical shape strongly influences the electronic and optical properties of these nanostructuctures. We measure for them ground state optical transitions in the range 1.25–1.35 eV and varying energy splitting between their excited states. The temperature dependence of the exciton recombination dynamics is reported focusing on the intermediate temperature regime (before thermal escape begins to be important). In this range, an important increase of the effective photoluminescence decay time is observed and attributed to the state filling and exciton thermalization between excited and ground states. A rate equation model is also developed reproducing quite well the observed exciton dynamics.  相似文献   

14.
The squeezing effect of a nanomechanical resonator coupled to a two-level system is studied by variational calculations based on both the displaced-squeezed-state (DSS) and the displaced-oscillator-state (DOS). The stable region of the DSS ground state at both T = 0 and T ≠ 0 and the corresponding squeezing factor are calculated. It is found that when the resonator frequency lies in (kBT,△), where A is the tunnelling splitting of the two-level-system in the presence of dissipation, tunnelling splitting of a DSS ground state decreases with the temperature, while tunnelling splittihg of a DOS ground state increases with the temperature in low temperature region. This opposite temperature dependence can help to distinguish between the DSS and DOS ground state in the experiment.  相似文献   

15.
We investigate the electron dynamics of p-type modulation doped and undoped InGaAs/GaAs quantum dots using up-conversion photoluminescence at low temperature and room temperature. The rise time of the p-doped sample is significantly shorter than that of the undoped at low temperature. With increasing to room temperature the undoped sample exhibits a decreased rise time whilst that of the doped sample does not change. A relaxation mechanism of electron-hole scattering is proposed in which the doped quantum dots exhibit an enhanced and temperature independent relaxation due to excess built-in holes in the valence band of the quantum dots. In contrast, the rise time of the undoped quantum dots decreases significantly at room temperature due to the large availability of holes in the ground state of the valence band. Furthermore, modulation p-doping results in a shorter lifetime due to the presence of excess defects.  相似文献   

16.
Using the tomographic probability distribution (symplectic tomogram) describing the quantum state (instead of the wave function or density matrix) and properties of recently introduced tomographic entropy associated with the probability distribution, the new uncertainty relation for the tomographic entropy is obtained. Examples of the entropic uncertainty relation for squeezed states and solitons of the Bose-Einstein condensate are considered.  相似文献   

17.
Previous work on the retrodictive theory of direct detection is extended to cover the homodyne detection of coherent optical signal states and . The retrodictive input state probabilities are obtained by the application of Bayes' theorem to the corresponding predictive distributions, based on the probability operator measure (POM) elements for the homodyne process. Results are derived for the retrodictive information on the complex amplitude of the signal field obtainable from the difference photocount statistics of both 4-port and 8-port balanced homodyne detection schemes. The local oscillator is usually assumed much stronger than the signal but the case of equal strengths in 4-port detection is also considered. The calculated probability distributions and error rates are illustrated numerically for values of signal and local oscillator strengths that extend from the classical to the quantum regimes.  相似文献   

18.
A driven three-level atom system in free-space is investigated. The quantum entropy between the three-level atom and its spontaneous field is calculated. The entanglement between them and the influence of the classical field Ω on the entanglement are studied. The result indicates that there is a steady entanglement between the three-level atom and its spontaneous field, and they cannot be disentangled even the classical field is very large. In addition, the entanglement of the k photons and q photons is studied, it shows the two field is entangled for short time evolution.  相似文献   

19.
Dynamic storage and retrieval of a weak infrared (IR)-light pulse are investigated theoretically with feasible parameters in an asymmetric double quantum dot system, a quantum dot molecule (QDM). It is shown that, with a voltage-controlled tunneling, we are able to store and retrieve the IR signal pulse in this three-subband QDM medium by slowly switching off and on the tunneling. The scheme proposed may open up the electrical controllability of quantum optical information storage and retrieval, which is expected to be useful in quantum information science in an asymmetric double quantum dot controlled by voltage.  相似文献   

20.
We report on the single photon emission from single InAs/GaAs self-assembled Stranski-Krastanow quantum dots up to 80 K under pulsed and continuous wave excitations. At temperature 8OK, the second-order correlation function at zero time delay, g^(2)(0), is measured to be 0.422 for pulsed excitation. At the same temperature under continuous wave excitation, the photon antibunching effect is observed. Thus, our experimental results demonstrate a promising potential application of self-assembled InAs/GaAs quantum dots in single photon emission at liquid nitrogen temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号