首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
I.IntroductionSinceelasticunloadingoccursinthedeformationprocess,theimperfectionsensitivityanalysisofstructuresloadedintotheplasticrangeismuchcomplicated.TheproblemisfirststudiedintheorybyHutchinson(1973,1974)l"ZI.HeusedKoiter'stheorytoanalysethebehaviorpriortotheonsetofelasticunloadingandtoobtaintheloadandthedisplacementatwhichelasticunloadingbegins.NeedlemanandTvergaard(1982)l'jpresentedananalysisofimperfeCtionsensitivityintheplasticrangethatignoreselasticunloading,thatis,substituteshypo-…  相似文献   

2.
The results of an experimental and analytical study of the effects of initial imperfections on the buckling and postbuckling response of three unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells with different orthotropic and quasi-isotropic shell-wall laminates are presented. The results identify the effects of traditional and non-traditional initial imperfections on the non-linear response and buckling loads of the shells. The traditional imperfections include the geometric shell-wall mid-surface imperfections that are commonly discussed in the literature on thin shell buckling. The non-traditional imperfections include shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, non-uniform applied end loads, and variations in the boundary conditions including the effects of elastic boundary conditions. A high-fidelity non-linear shell analysis procedure that accurately accounts for the effects of these traditional and non-traditional imperfections on the non-linear responses and buckling loads of the shells is described. The analysis procedure includes a non-linear static analysis that predicts stable response characteristics of the shells and a non-linear transient analysis that predicts unstable response characteristics.  相似文献   

3.
The results from studies into the vibrations and dynamic stability of thin elastic shells with initial geometric imperfections are analyzed. The corresponding dynamic problems are solved in both linear and nonlinear formulations. The influence of initial axisymmetric and nonaxisymmetric deflections on natural, forced, parametrically excited, and self-excited vibrations (flutter) is studied. The dynamic buckling of imperfect shells under short-term impulsive loading is examined. Some aspects of experimental investigation into the vibrations of shells with small geometric imperfections (deviations from the design shape) are considered  相似文献   

4.
针对薄壁圆筒壳结构轴压屈曲载荷的缺陷敏感性以及真实几何缺陷的不确定性,提出一种基于实测缺陷数据和极大熵原理的初始缺陷建模与屈曲载荷预测方法。首先,将初始几何缺陷视为二维随机场,并利用实测缺陷数据和Karhunen-Loève展开法将初始缺陷的随机场建模转化为随机向量的建模;其次,利用极大熵方法确定随机向量的概率分布;最后,基于所构建的初始缺陷随机模型,利用MCMC抽样方法和确定性屈曲分析方法,进行随机屈曲分析并给出基于可靠度的屈曲载荷折减因子。数值算例表明,与直接假设随机场相关结构的方法相比,本文方法的结果是对薄壁圆筒壳屈曲载荷的一个更无偏估计。  相似文献   

5.
ABSTRACT

A simple general method for the evaluation of the effect of shape imperfections on the buckling of thin shells is briefly presented. This method is applied to the axially compressed thin cylindrical shell resulting in an efficient numerical procedure for the computation of its buckling strength. The procedure is applicable to any sufficiently smooth imperfection pattern and has given results in good agreement with the available experimental data.  相似文献   

6.
7.
The initial buckling load of curved panels under compressive loads is substantially reduced by the existence of imperfections, in particular geometric imperfections. It is therefore essential that these imperfections are considered in analysing components which incorporate such panels in order to accurately predict their buckling behaviour. Finite element analysis allows fully non-linear analysis of shells containing geometric imperfections, however, to obtain accurate results information is required on the exact size and shape of the imperfection to be modelled. In most cases this data is not available. It is therefore generally recommended that the imperfections are modelled on the first eigenmode and have an amplitude selected according to the manufacturing procedure. This paper presents the effects of varying imperfection shape and amplitude on the buckling and postbuckling behaviour of one specific case, a curved panel under combined shear and compression, to test the accuracy of such recommendations.  相似文献   

8.
9.
A topology optimization method is proposed for the design of trusses with random geometric imperfections due to fabrication errors. This method is a generalization of a previously developed perturbation approach to topology optimization under geometric uncertainties. The main novelty in the present paper is that the objective function includes the nonlinear effects of potential buckling due to misaligned structural members. Solutions are therefore dependent on the magnitude of applied loads and the direction of resulting internal member forces (whether they are compression or tension). Direct differentiation is used in the sensitivity analysis, and analytical expressions for the associated derivatives are derived in a form that is computationally efficient. A series of examples illustrate how the effects of geometric imperfections and buckling may have substantial influence on truss design. Monte Carlo simulation together with second-order elastic analysis is used to verify that solutions offer improved performance in the presence of geometric uncertainties.  相似文献   

10.
In this paper,Neale’S generalized variational principle aboutincremental boundarg-value problems is utilized to study theeffect of initial imperfections in geometry on tbe criticalloads of elasticoplastic buckling of thin annular plates.Thecalculations show that.if the effect of initial imperfectionsin geometrg is taken into account in the solutions by J_2 in-cremental theorg.the results are very close to the bifurca-tional buckling loads of the perfect annular Plates accordingto the plastic deformation theorg.  相似文献   

11.
Nonlinear buckling optimization is introduced as a method for doing laminate optimization on generalized composite shell structures exhibiting nonlinear behaviour where the objective is to maximize the buckling load. The method is based on geometrically nonlinear analyses and uses gradient information of the nonlinear buckling load in combination with mathematical programming to solve the problem. Thin-walled optimal laminated structures may have risk of a relatively high sensitivity to geometric imperfections. This is investigated by the concepts of “worst” imperfections and an optimization method to determine the “worst” shape imperfections is presented where the objective is to minimize the buckling load subject to imperfection amplitude constraints. The ability of the nonlinear buckling optimization formulation to solve the laminate problem and determine the “worst” shape imperfections is illustrated by several numerical examples of composite laminated structures and the application of both formulations gives useful insight into the interaction between laminate design and geometric imperfections.  相似文献   

12.
The present experimental study aims at providing better inputs for improvement of the buckling load predictions of stiffened cylindrical shells subjected to combined loading. The work focuses on two main factors which considerably affect the combined buckling load of stiffened shells, namely geometric imperfections and boundary conditions. Six shells with nominal simple supports were tested under various combinations of axial compression and external pressure. The vibration correlation technique is employed to define the real boundary conditions. The geometric imperfections of the integrally stiffened shells are measured in the present experiments in situ and are used as inputs to a multimode analysis which yields the corresponding “knockdown” factor for various combinations of loading. Thus, when employing the repeated buckling procedure for obtaining interaction curves, each point on the curve is adjusted (using the multimode analysis) for the measured “new” surface of the shell and this results in more realistic interaction curves. The geometrical imperfections of the preloaded shells can also serve as an input to the International Imperfection Data Bank for future studies on the correlation between the manufacturing method of the shell and their geometric imperfections.  相似文献   

13.
利用随机场对圆柱薄壳结构的初始几何缺陷进行建模,并据此建立了一种用于含初始几何缺陷轴压圆柱薄壳屈曲分析的随机分析方法。首先,指出已有将圆柱薄壳初始几何缺陷表征为二维高斯随机场的方法会导致与实际不相符的初始几何缺陷,如圆柱周长显著增大或缩小的几何缺陷。其次,提出一种考虑周长不变约束的随机场建模方法,以剔除与实际不相符的随机几何缺陷。最后,基于所建立的初始几何缺陷随机场模型,利用非干涉多项式混沌展开法进行圆柱薄壳的随机屈曲分析,给出临界屈曲载荷的概率分布。数值试验结果表明,基于随机场理论的初始几何缺陷建模方法可有效刻画几何缺陷对结构承载能力的影响,而提出的约束随机场建模方法又能有效减小结果的分散性。  相似文献   

14.
Results from theoretical and experimental investigations into the nonlinear deformation (geometrical nonlinearity, plastic deformation, creep) and critical states (limit loads, buckling) of shell-frame systems with geometric imperfections are analyzed. The presence of prestresses is allowed. Diverse effects of various geometrical imperfections and plastic deformation for different load histories are studied. New qualitative effects of the mutual influence of these factors are established. Relevant experimental results are outlined __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 12, pp. 3–47, December 2006.  相似文献   

15.
Stability of imperfect elastic cylindrical shells which are subjected to uniform axial compression is analyzed by using the finite element method. Multiple interacting localized axisymmetric initial geometric imperfections, having either triangular or wavelet shapes, were considered. The effect of a single localized geometric imperfection was analyzed in order to assess the most adverse configuration in terms of shell aspect ratios. Then two or three geometric imperfections of a given shape and which were uniformly distributed along the shell length were introduced to quantify their global effect on the shell buckling strength. It was shown that with two or three interacting geometric imperfections further reduction of the buckling load is obtained. In the ranges of parameters that were investigated, the imperfection wavelength was found to be the major factor influencing shell stability; it is followed by the imperfection amplitude, then by the interval distance separating the localized imperfections. In a wide range of parameters this last factor was recognized to have almost no effect on buckling stresses.  相似文献   

16.
In this paper, the nonlinear behavior of a motion amplifier used to obtain large rotations from small linear displacements produced by a piezoelectric stack is studied. The motion amplifier uses elastic (buckling) and dynamic instabilities of an axially driven buckling beam. Since the amplifier is driving a large rotary inertia at the pinned end and the operational frequency is low compared to the resonant frequencies of the beam, the mass of the buckling beam and the dynamics of the PZT stack are neglected and the system is modeled as a single-degree-of-freedom, nonlinear system. The beam simply behaves as a nonlinear rotational spring having a prescribed displacement on the input end and a moment produced by the inertial mass acting on the output end. The moment applied to the mass is then a function of the beam end displacement and the mass rotation. The system can, thus, be modeled simply as a base-excited, spring–mass oscillator. Results of the response for an ideal beam using this reduced-order model agree with the experimental data to a high degree. Inclusion of loading and geometric imperfections show that the response is not particularly sensitive to these imperfections. Parameter studies for the ideal buckling beam amplifier were conducted to provide guidance for improving the design of the motion amplifier and finding the optimal operating conditions for different applications. An erratum to this article can be found at  相似文献   

17.
Buckling of drill and tubing strings in drill or casing holes will affect the life of the string and cause difficulties in drilling and in oil production. A number of theoretical models have been developed to study the buckling load and the post-buckling configuration of the strings under some idealized conditions. However, verification of these theories in practice or in laboratory has not been extensively reported.In this paper work on laboratory buckling tests of strings is presented and the results are compared with theoretical formulas. The results indicate that the process of string buckling can be divided into two stages, namely plane buckling and spatial buckling. In the spatial buckling the string-buckling configuration can roughly be represented by a helix. The relation between the buckling force and the helical pitch, obtained from the laboratory tests, is similar to that predicted by helical buckling theories. The friction between the string and the wall of the confining tube causes a nonuniform buckling shape and prohibits further buckling at some critical loads. The buckling theories do not cover these effects and may thus induce significant errors in predicting the string-post-buckling configuration. An approximate formula for estimating the friction force is proposed, which provides more accurate results. Further studies of the friction effect are suggested.  相似文献   

18.
含初缺陷裂纹损伤梁的冲击动力屈曲   总被引:1,自引:0,他引:1  
由Hamilton原理导出考虑初始缺陷及横向剪切变形时裂纹梁的动力屈曲控制方程;应用断裂力学中常用的线弹簧模型将裂纹引入到屈曲控制方程中;基于B-R动力屈曲判断准则,采用数值方法求解了受轴向冲击载荷作用时裂纹梁的动力屈曲;对比讨论了不同冲击速度、初始几何缺陷大小以及分布形式等因素对梁冲击动力屈曲的影响。  相似文献   

19.
Thin-walled structural members are susceptible to failure by interaction of local and overall modes of buckling. A comprehensive analytical approach that employs finite strips and the theory of mode interaction is outlined for study of the problem. Theoretical predictions of collapse loads agree well with the experimental results, despite the uncertainty caused by the lack of data on local imperfections of experimental specimens. Illustrative examples explore to some extent the following specific questions: optimality of design for simultaneous buckling, imperfection-sensitivity of compression members having unstiffened plate elements, and the nature of interaction of local and lateral-torsional buckling.  相似文献   

20.
While studies of post-buckling behavior and load-carrying capacities of thin plates subjected to uniaxial compression have been limited to stable conditions, further post-buckling loading generates an unstable condition. The secondary buckling which occurs with snap-through to higher-order deflections under such unstable conditions has not been analyzed in detail as yet. In the first part of this paper, a thin square plate under uniaxial compression, which is simply supported along four edges, is considered. A method based on the second variation of the total potential energy is then proposed for evaluating the stability of the post-buckling equilibrium state and inevitable secondary buckling is derived analytically. The effects of various factors, such as initial imperfections, assumed virtual displacement pattern, post-buckling deflection pattern and in-plane boundary conditions, on the secondary buckling values are discussed. In part 2, secondary buckling of clamped plates is analyzed by use of the finite element method and the resultant numerical results are compared with experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号