首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phonon-induced spin relaxation in coupled lateral quantum dots in the presence of spin-orbit coupling is calculated. The calculation for single dots is consistent with experiment. Spin relaxation in double dots at useful interdot couplings is dominated by spin-hot spots that are strongly anisotropic. Spin-hot spots are ineffective for a diagonal crystallographic orientation of the dots with a transverse in-plane field. This geometry is proposed for spin-based quantum information processing.  相似文献   

2.
谷利英  李艳芳  楚卫东  卫英慧 《中国物理 B》2012,21(2):27301-027301
We study the effect of structure asymmetry on the energy spectrum and the far-infrared spectrum (FIR) of a lateral coupled quantum dot. The calculated spectrum shows that the parity break of coupled quantum dot results in more coherent superpositions in the low-lying states and exhibits unique anti-crossing in the two-electron FIR spectrum modulated by a magnetic field. We also find that the Coulomb correlation effect can make the FIR spectrum of coupled quantum dot without strict parity deviate greatly from Kohn theorem, which is just contrary to the symmetric case. Our results therefore suggest that FIR spectrum may be used to determine the symmetry of coupled quantum dot and to evaluate the degree of Coulomb interaction.  相似文献   

3.
4.
We have studied the electron dynamics in different geometrical arrangements of the two coupled double quantum dot structures. Applying the equation of motion method for appropriate correlation functions the occupation probabilities of different quantum dots of the considered system has been theoretically investigated. The numerical calculations were performed for different forms of the time-dependent tunneling amplitudes and quantum dot energy levels. We found, among others, that under some conditions for the tunneling amplitudes changed in the form of Gaussian pulses it is possible to localize the electron in a controlled manner on the given dot of the considered system.  相似文献   

5.
We report observation of Coulomb blockade lifting in GaAs vertical double quantum dot caused by cotunneling processes. One characteristic feature of investigated sample is relatively low potential barriers between dots and reservoirs, which makes cotunneling processes favorable. The measurement of current through the sample under variable bias and gate voltages was carried out at temperature of dilution refrigerator 10 mK. Several distinct features, specific to double dot, were observed and appropriate explanation for them was given.  相似文献   

6.
The tunnel magnetoresistance (TMR) in an Aharonov–Bohm interferometer with two quantum dots inserted in its arms, which is attached to ferromagnetic leads with parallel and antiparallel magnetic configurations, is theoretically studied by means of the nonequilibrium Green’s function technique. We pay particular attention to the influence of an applied magnetic flux on the characteristics of the TMR. In the linear response regime (the external bias voltage V→0) and when the electrons are free from intradot Coulomb interaction, the magnetic flux only changes the peak or dip positions of the TMR. But in the presence of intradot Coulomb repulsion, its peak or dip positions, signs and magnitude are tuned by the magnetic flux. For the nonlinear response regime (V≠0), the TMR is symmetric with respect to zero bias voltage and the magnetic flux can influence its magnitude, signs and the peak positions regardless of the existence of intradot Coulomb interaction. The behavior of the TMR is interpreted in terms of the quantum interference (Fano) effect.  相似文献   

7.
We investigate symmetrically coupled double quantum dots via the hierarchical equations of motion method and propose a novel zero-energy mode(ZEM) at a temperature above the spin singlet–triplet transition temperature. Owing to the resonance of electron quasi-particle and hole quasi-particle, ZEM has a peak at ω = 0 in the spectral density function.We further examine the effect of the magnetic field on the ZEM, where an entanglement of spin and charge has been determined; therefore, the magnetic field can split the ZEM in the spectra.  相似文献   

8.
We investigate entanglement between electrons in serially coupled double quantum dots attached to noninteracting leads. In addition to local repulsion we consider the influence of capacitive inter-dot interaction. We show how the competition between extended Kondo and local singlet phases determines the ground state and thereby the entanglement. The results are additionally discussed in connection with the linear conductance through the system.  相似文献   

9.
We propose a theoretical scheme to generate a controllable and switchable coupling between two double-quantum-dot (DQD) spin qubits by using a transmission line resonator (TLR) as a bus system. We study dynamical behaviors of quantum correlations described by entanglement correlation (EC) and discord correlation (DC) between two DQD spin qubits when the two spin qubits and the TLR are initially prepared in X-type quantum states and a coherent state, respectively. We demonstrate that in the EC death regions there exist DC stationary states in which the stable DC amplification or degradation can be generated during the dynamical evolution. It is shown that these DC stationary states can be controlled by initial-state parameters, the coupling, and detuning between qubits and the TLR. We reveal the full synchronization and anti-synchronization phenomena in the EC and DC time evolution, and show that the EC and DC synchronization and anti-synchronization depends on the initial-state parameters of the two DQD spin qubits. It is shown that the initial quantum correlation may be suppressed completely when the evolution time approaches to the infinity in the presence of dissipation. These results shed new light on dynamics of quantum correlations.  相似文献   

10.
贺泽龙  吕天全  张迪 《中国物理 B》2013,22(2):27306-027306
Using the nonequilibrium Green’s function technique,electron transport through a laterally coupled vertical triple quantum dot is investigated.The conductance as a function of electron energy is numerically calculated.The evolution of the conductance strongly depends on the configuration of dot levels and interdot coupling strengths.  相似文献   

11.
By means of sequential and cotunneling spectroscopy, we study the tunnel couplings between metallic leads and individual levels in a carbon nanotube quantum dot. The levels are ordered in shells consisting of two doublets with strong- and weak-tunnel couplings, leading to gate-dependent level renormalization. By comparison to a one- and two-shell model, this is shown to be a consequence of disorder-induced valley mixing in the nanotube. Moreover, a parallel magnetic field is shown to reduce this mixing and thus suppress the effects of tunnel renormalization.  相似文献   

12.
We investigate two equivalent, capacitively coupled semiconducting quantum dots, each coupled to its own lead, in a regime where there are two electrons on the double dot. With increasing interdot coupling, a rich range of behavior is uncovered: first a crossover from spin- to charge-Kondo physics, via an intermediate SU(4) state with entangled spin and charge degrees of freedom, followed by a quantum phase transition of Kosterlitz-Thouless type to a non-Fermi-liquid "charge-ordered" phase with finite residual entropy and anomalous transport properties. Physical arguments and numerical renormalization group methods are employed to obtain a detailed understanding of the problem.  相似文献   

13.
The electrical conductance, the thermal conductance, the thermopower and the thermoelectrical figure of merit are analyzed through a double quantum dot system weakly coupled to metal electrodes, by means of density matrix approach. The effects of interdot tunneling, intra- and interdot Coulomb repulsions on the figure of merit are examined. Results show that increase of interdot tunneling gives rise to a reduction in figure of merit. On the other hand, increase of Coulomb repulsion results in enhancement of figure of merit because of reduce of bipolar effect.  相似文献   

14.
15.
We consider the dynamics of a single electron in a chain of tunnel coupled quantum dots, exploring the formal analogies of this system with some of the laser-driven multilevel atomic or molecular systems studied by Bruce W. Shore and collaborators over the last 30 years. In particular, we describe two regimes for achieving complete coherent transfer of population in such a multistate system. In the first regime, by carefully arranging the coupling strengths, the flow of population between the states of the system can be made periodic in time. In the second regime, by employing a “counterintuitive” sequence of couplings, the coherent population trapping eigenstate of the system can be rotated from the initial to the final desired state, which is an equivalent of the STIRAP technique for atoms or molecules. Our results may be useful in future quantum computation schemes.  相似文献   

16.
Exciton states in a pair of strongly coupled artificial asymmetric quantum dots (QDs) have been studied in magnetic fields up to B = 8T by means of photoluminescence spectroscopy. The QD molecules have been fabricated using a selective interdiffusion technique applied to asymmetric CdTe/(Cd,Mg,Mn)Te double quantum wells. The lateral confinement potential within the plane induced by the diffusion gives rise to effective zero-dimensional exciton localization. Incorporation of the Mn ions in only one dot results in a pair of QDs with a markedly different spin splitting. In contrast to a positive value of the exciton Lande g factor in nonmagnetic (Cd,Mg)Te-based single QDs, the ground exciton transition in the nonmagnetic QD demonstrates nearly zero g factor, thus, indicating a strong electron coupling between the dots. A new low-energy band with a strong red shift appears at high B signifying formation of the indirect exciton in accordance with our calculations. The text was submitted by the authors in English.  相似文献   

17.
In the present work, we have studied the electronic properties of two-electron quantum dots with considering a two-dimensional modified Gaussian confinement potential in the presence of an impurity. We have investigated the effects of impurity position and charge of impurity on the entanglement entropy and the exchange coupling of the system. The location and charge screening of the impurity atom modulate the degree of entanglement. According to the results, it is found that the entanglement can be considered in two regions, at low and high entanglement. The magnitude of the charge impurity determines both regions of entanglement.  相似文献   

18.
19.
Using an equation-of-motion technique, we theoretically study the Fano--Kondo effect in the T-shaped double quantum dots coupled to two ferromagnetic leads by the Anderson Hamiltonian. We calculate the density of states in this system with both parallel and antiparallel lead-polarization alignments, and our results reveal that the interdot coupling, the spin-polarized strength and the energy level of the side coupled quantum dot greatly influence the density of states of the central quantum dot. This system is a possible candidate for spin valve transistors and may have potential applications in the spintronics.  相似文献   

20.
We report the electrical induction and detection of dynamic nuclear polarization in the spin-blockade regime of double GaAs vertical quantum dots. The nuclear Overhauser field measurement relies on bias voltage control of the interdot spin exchange coupling and measurement of dc current at variable external magnetic fields. The largest Overhauser field observed was about 4 T, corresponding to a nuclear polarization approximately 40% for the electronic g factor typical of these devices, |g*| approximately 0.25. A phenomenological model is proposed to explain these observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号