首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study theoretically the interactions of excitonic states with surface electromagnetic modes of small-diameter (≲1 nm) semiconducting single-walled carbon nanotubes. We show that these interactions can result in strong exciton-surface-plasmon coupling. The exciton absorption lineshape exhibits the line (Rabi) splitting ∼0.1–0.3 eV as the exciton energy is tuned to the nearest interband surface plasmon resonance of the nanotube so that the mixed strongly coupled surface plasmon-exciton excitations are formed. We discuss possible ways to bring the exciton in resonance with the surface plasmon. The exciton-plasmon Rabi splitting effect we predict here for an individual carbon nanotube is close in its magnitude to that previously reported for hybrid plasmonic nanostructures artificially fabricated of organic semiconductors deposited on metallic films. We expect this effect to open up paths to new tunable optoelectronic device applications of semiconducting carbon nanotubes.  相似文献   

2.
Physics of the Solid State - A theory for propagation of polaritons in superlattices with resonant plasmon-exciton coupling is presented. A periodical superlattice consists of a finite number of...  相似文献   

3.
The effects of plasmon-exciton interaction on the spectra of light absorption by hybrid systems of two- and three-layer nanoparticles that consist of a metallic nucleus, the outer shells of ordered molecular dye J-aggregates, and an intermediate passive organic spacer between them is analyzed theoretically. It is established that the type of the absorption spectra and the efficiency of a near-field electromagnetic coupling between the particles in the system depends largely on the distance between the centers of concentric spheres and the direction of light polarization.  相似文献   

4.

Spectra of light extinction by metal nanoprisms and nanostars coated with molecular aggregates of organic dyes are calculated and theoretically analyzed. Qualitatively different nature of the spectra of organometallic nanoparticles under study is established when using J-aggregates of various cyanine dyes as their capping layer, as well as silver and gold as the cores. This results from the implementation of various plasmon-exciton coupling modes in the systems under consideration.

  相似文献   

5.
The present paper discusses the stimulated emission, in strong coupling regime, of an atom embedded inside a one dimensional (1D) Photonic Band Gap (PBG) cavity which is pumped by two counter-propagating laser beams. Quantum electrodynamics is applied to model the atom-field interaction, by considering the atom as a two level system, the e.m. field as a superposition of normal modes, the coupling in dipole approximation, and the equations of motion in Wigner-Weisskopf and rotating wave approximations. In addition, the Quasi Normal Mode (QNM) approach for an open cavity is adopted, interpreting the local density of states (LDOS) as the local density of probability to excite one QNM of the cavity; and therefore rendering this LDOS dependent on the phase difference of the two laser beams. In this paper we demonstrate that the strong coupling regime occurs at high values of the LDOS. In accordance with the results of the literature, the emission probability of the atom decays with an oscillatory behaviour, so that the atomic emission spectrum exhibits two peaks (Rabi splitting). The novelty of this work is that the phase difference of the two laser beams can produce a coherent control of both the oscillations for the atomic emission probability and, as a consequence, of the Rabi splitting in the emission spectrum. Possible criteria to design active delay lines are finally discussed.  相似文献   

6.
We analyze the optical response of small-diameter (?1 nm) semiconducting carbon nanotubes under the exciton-surface-plasmon coupling. Calculated optical absorption lineshapes exhibit the significant line (Rabi) splitting ∼0.1-0.3 eV as the exciton energy is tuned to the nearest interband surface plasmon resonance of the nanotube so that the mixed strongly coupled surface plasmon-exciton excitations are formed. We discuss possible ways to bring the exciton in resonance with the surface plasmon. The exciton-plasmon Rabi splitting effect we predict here for an individual carbon nanotube is close in its magnitude to that previously reported for hybrid plasmonic nanostructures artificially fabricated of organic semiconductors deposited on metallic films. We believe this effect may be used for the development of carbon nanotube based tunable optoelectronic device applications in areas such as nanophotonics and cavity quantum electrodynamics.  相似文献   

7.
We demonstrate strong confinement of the optical field by depositing a micron sized metallic disk on a planar distributed Bragg reflector. Confined Tamm plasmon modes are evidenced both experimentally and theoretically, with a lateral confinement limited to the disk area and strong coupling to TE polarized fields. Single quantum dots controllably coupled to these modes are shown to experience acceleration of their spontaneous emission when spectrally resonant with the mode. For quantum dots spectrally detuned from the confined Tamm plasmon mode, an inhibition of spontaneous emission by a factor 40±4 is observed, a record value in the optical domain.  相似文献   

8.
By using the method of eigenvectors, the atomic populations and emission spectrum are investigated in a system that consists of a cascade three-level atom resonantly interacting with a single-mode field in a Kerr-like medium.The atom and the field are assumed to be initially in the upper atomic state and the Fock state, respectively. Results for models with intensity-dependent coupling and with intensity-independent coupling are compared. It is found that both population dynamics and emission spectrum show no indications of atom-field decoupling in the strong field limit if the intensity-dependent coupling is taken into account.  相似文献   

9.
陈翔  米贤武 《物理学报》2011,60(10):104204-104204
用全量子理论研究二能级原子单模腔耦合系统,通过理论推导和数值计算得出系统的自发辐射光谱和平均粒子数密度.共振时腔与原子的发射光谱在强耦合与弱耦合区域有所不同,腔发射光谱分裂只出现于强耦合区域,而原子发射光谱由于腔感应透明效应在弱耦合区域出现了缺口.本文系统地研究了原子与腔在失谐时的发射光谱,在好腔机理(腔线宽小于原子线宽g)原子与腔即使在大失谐时腔发射出腔频率的光子,这给当前实验上困惑的特性提供了一个理论依据.为了给腔感应透明效应一个新的深入了解,还研究了原子与腔平均粒子数密度随时间的演化,以及平均粒子数密度与光强度之间的关系. 关键词: 自发辐射 强耦合 腔感应透明 好腔机理  相似文献   

10.
The upper state population evolution and the spontaneous emission spectrum of a two-level atom in a non-resonant damped cavity are investigated by using the resolvent operator. The analytic expressions of the spectrum and the upper state population with strong and intermediate coupling are obtained. The influence of coupling intensity and detuning on atomic spectrum is discussed. We find that the detuning affects strongly the shape of spectra.  相似文献   

11.
We report on the linear and non-linear emission of cavity-polaritons under resonant excitation. At low excitation density, in addition to polariton photoluminescence, strong Rayleigh scattering is observed. At higher excitation densities, a sudden transition to a highly emissive state is observed, accompanied by spatial patterning. We attribute such phenomena to a combination of nonlinear cavity-polariton relaxation mechanism and nonlinear response of the cavity, leading to transverse pattern formation. A careful analysis of near- and far-field emission patterns with spatial filtering as well as reflectivity shows that an inhomogeneous situation develops, the center of the excited region undergoing a strong to weak coupling transition while the periphery is still in strong coupling. Despite the complex non-linear behavior we observe no signatures of Bose–Einstein condensation or Boser action.  相似文献   

12.
We calculate the infrared absorption of large polarons bound to defects in the weak coupling limit. Polar crystals with more than one longitudinal optical phonon branch coupled to the electrons are considered. Oscillator strengths corresponding to defect transitions without phonons and to transitions with emission of phonons are calculated using the Larsen wave-functions. The results are applied to infrared data in strontium titanate and it is found that weak coupling calculations are in better agreement than strong coupling ones.  相似文献   

13.
The analytical eigenenergies and eigenstates of the Rabi model are obtained approximately based on a unitary transformation and a generalized rotating-wave approximation (GRWA). Using these analytical expressions without the rotating wave approximation (RWA), we generalize the definition of the physical emission spectrum valid with the RWA in order to meet without the RWA with some modifications. Taking into account the counter-rotating wave terms and the intercrossing of energy level in the strong coupling regime, the physical emission spectrum of qubit is investigated. Different from the case with RWA, the multi-peak vacuum Rabi splitting, even when the qubit initially in its ground state and the bosonic field initially in vacuum, can emerge. These new features of physical emission spectrum originate from the effect of counter-rotating wave terms. Moreover, the intercrossing of energy level can also be observed in the strong coupling regime.  相似文献   

14.
The results of the theoretical study of optical properties of composite nanoparticles consisting of a metal core (Ag, Au, Cu, Al, Ni, Cr) and a J-aggregate shell of organic dye are presented. Light extinction, absorption, and scattering coefficients in colloidal solutions were calculated within the model based on the Mie theory modified taking into account dimensional phenomena and complemented by calculations of complex dielectric functions of the metal core and J-aggregate shell. The model adequately explains the features observed in light absorption and scattering spectra by hybrid nanoparticles, associated with the plasmon resonance in the metal core and with electronic excitation of the J-aggregate. The strong dependence of the results on geometrical parameters of nanoparticles and dielectric constants of core and shell materials was demonstrated. Methods for controlling the effects of the plasmon-exciton interaction in the system and optical properties of composite materials developed based on nanoparticles under study are discussed.  相似文献   

15.
The realization of the strong coupling regime is requisite for implementing quantum information tasks. Here, a method for enhancing the atom–field coupling in highly dissipative coupled cavities is proposed. By introducing parametric squeezing into the primary cavity, which is only virtually excited under specific parametric conditions, coupling enhancement between the atom and the auxiliary cavity is realized for appropriate squeezing parameters. This enables the system to be robust against large cavity decay and atomic spontaneous emission. The observation of vacuum Rabi oscillations show that the originally weakly coupled system can be enhanced into an effective strong coupling regime.  相似文献   

16.
Jian-Mei Li 《中国物理 B》2022,31(11):116801-116801
We investigated the photon emission spectra on Ag (111) surface excited by tunneling electrons using a low temperature scanning tunneling microscope in ultrahigh vacuum. Characteristic plasmon modes were illustrated as a function of the bias voltage. The one electron excitation process was revealed by the linear relationship between the luminescence intensity and the tunneling current. Luminescence enhancement is observed in the tunneling regime for the relatively high bias voltages, as well as at the field emission resonance with bias voltage increased up to 9 V. Presence of a silver (Ag) nanoparticle in the tunneling junction results in an abnormally strong photon emission at the high field emission resonances, which is explained by the further enhancement due to coupling between the localized surface plasmon and the vacuum. The results are of potential value for applications where ultimate enhancement of photon emission is desired.  相似文献   

17.
We study the spontaneous emission spectrum of a three-level Λ-type atom in a damped cavity using the resolvent operator. The shape of the spectrum is strongly influenced by the detuning and the coupling intensity between the atom and the cavity mode. Especially, we find that the splittings of the upper level of the three-level Λ-type atom are different in strong coupling regime, intermediate coupling regime and weak coupling regimes.  相似文献   

18.
A preliminary investigation of tomographic reconstruction of an asymmetric arc plasma has been carried out. The objective of this work aims at reconstructing emission coefficients of a non-axisymmetric coupling arc from measured intensities by means of an algebraic reconstruction technique (ART). In order to define the optimal experimental scheme for good quality with limited views, the dependence of the reconstruction quality on three configurations (four, eight, ten projection angles) are presented and discussed via a displaced Gaussian model. Then, the emission coefficients of a free burning arc are reconstructed by the ART with the ten-view configuration and an Abel inversion, respectively, and good agreement is obtained. Finally, the emission coefficient profiles of the coupling arc are successfully achieved with the ten-view configuration. The results show that the distribution of emission coefficient for the coupling arc is different from centrosymmetric shape. The ART is perfectly suitable for reconstructing emission coefficients of the coupling arc with the ten-view configuration, proving the feasibility and utility of the ART to characterize an asymmetric arc.  相似文献   

19.
《Nuclear Physics B》1996,478(3):561-576
We compute the leading order (in coupling) rate of emission of low energy quanta from a slightly non-extremal system of 1-D- and 5-D-branes. We also compute the classical cross-section, and hence the Hawking emission rate, for low energy scalar quanta for the black hole geometry that corresponds to these branes (at sufficiently strong coupling). These rates are found to agree with each other.  相似文献   

20.
We study dynamics of a two-level superconducting quantum system, analogous to a natural atom in an open space, by measuring the evolution of its coherent and incoherent emission. The emitted waves containing full information about the states of the artificial atom are efficiently collected due to strong atom-transmission-line coupling. This allows us to do simultaneous measurements of all the quantum state projections and perform a full characterization of the system. We derive coherence times and extract the two-time correlation function from the dynamics of the coherent emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号