首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report measurements of the in-plane electrical resistivity rho and thermal conductivity kappa of the intercalated graphite superconductor C6Yb down to temperatures as low as Tc/100. When a field is applied along the c axis, the residual electronic linear term kappa0/T evolves in an exponential manner for Hc1相似文献   

2.
Relaxation rates in the rotating frame (R1rho) and spin-spin relaxation rates (R2) were measured in articular cartilage at various orientations of cartilage layer to the static magnetic field (B0), at various spin locking field strengths and at two different static magnetic field strengths. It was found that R1rho in the deep radial zone depended on the orientation of specimens in the magnet and decreased with increasing the spin locking field strength. In contrast, R1rho values in the transitional zone were nearly independent of the specimen orientation and the spin locking field strength. Measurements of the same specimens at 2.95 and 7.05 T showed an increase of R1rho and most R2 values with increasing B0. The inverse B0 dependence of some R2 values was probably due to a multicomponent character of the transverse magnetization decay. The experiments revealed that the dominant T1rho and T2 relaxation mechanism at B0 < or = 3 T is a dipolar interaction due to slow anisotropic motion of water molecules in the collagen matrix. On average, the contribution of scalar relaxation due to rapid proton exchange in femoral head cartilage at 2.95 T is about 6% or less of the total R1rho at the spin locking field of 1000 Hz.  相似文献   

3.
The resistivity of the heavy-fermion superconductor CeCoIn5 was measured as a function of temperature, down to 25 mK and in magnetic fields of up to 16 T applied perpendicular to the basal plane. With increasing field, we observe a suppression of the non-Fermi liquid behavior, rho approximately T, and the development of a Fermi liquid state, with its characteristic rho=rho(0)+AT2 dependence. The field dependence of the T2 coefficient shows critical behavior with an exponent of 1.37. This is evidence for a field-induced quantum critical point (QCP), occurring at a critical field which coincides, within experimental accuracy, with the superconducting critical field H(c2). We discuss the relation of this field-tuned QCP to a change in the magnetic state, seen as a change in magnetoresistance from positive to negative, at a crossover line that has a common border with the superconducting region below approximately 1 K.  相似文献   

4.
In the presence of radiofrequency irradiation, relaxation of magnetization aligned with the effective magnetic field is characterized by the time constant T1rho. On the other hand, the time constant T2rho characterizes the relaxation of magnetization that is perpendicular to the effective field. Here, it is shown that T2rho can be measured directly with Carr-Purcell sequences composed of a train of adiabatic full-passage (AFP) pulses. During adiabatic rotation, T2rho characterizes the relaxation of the magnetization, which under adiabatic conditions remains approximately perpendicular to the time-dependent effective field. Theory is derived to describe the influence of chemical exchange on T2rho relaxation in the fast-exchange regime, with time constant defined as T2rho,ex. The derived theory predicts the rate constant R2rho,ex (= 1/T2rho,ex) to be dependent on the choice of amplitude- and frequency-modulation functions used in the AFP pulses. Measurements of R2rho,ex of the water/ethanol exchanging system confirm the predicted dependence on modulation functions. The described theoretical framework and adiabatic methods represent new tools to probe exchanging systems.  相似文献   

5.
We present a study of heat and charge transport in Bi(2+x)Sr(2-x)CuO(6+delta) focused on the size of the low-temperature linear term of the thermal conductivity at optimal-doping level. In the superconducting state, the magnitude of this term implies a d-wave gap with an amplitude close to what has been reported. In the normal state, recovered by the application of a magnetic field, measurement of this term and residual resistivity yields a Lorenz number L=kappa(N)rho(0)/T=1.3+/-0.2L(0). The departure from the value expected by the Wiedemann-Franz law is thus slightly larger than our estimated experimental resolution.  相似文献   

6.
We report on the c-axis resistivity rho(c)(H) in Bi(2)Sr(2)CaCu(2)O(8+delta) that peaks in quasistatic magnetic fields up to 60 T. By suppressing the Josephson part of the two-channel (Cooper pair/quasiparticle) conductivity sigma(c)(H), we find that the negative slope of rho(c)(H) above the peak is due to quasiparticle tunneling conductivity sigma(q)(H) across the CuO2 layers below H(c2). At high fields (a) sigma(q)(H) grows linearly with H, and (b) rho(c)(T) tends to saturate ( sigma(c) not equal0) as T-->0, consistent with the scattering at the nodes of the d-wave gap. A superlinear sigma(q)(H) marks the normal state above T(c).  相似文献   

7.
Theoretical formulations are developed, based on mathematical models of inhomogeneous continua for the expected angular variation of bulk scattering from human and animal tissues. These results are compared with experimental data on angular scattering from liver, muscle, and blood, reported in a companion paper [J. Acoust. Soc. Am. 79, 2034-2047 (1986)], and deductions are drawn as to the appropriateness of the various models for representing the mechanical structure of the different tissues. On this basis, the experimental data and theoretical formulations are used to derive estimates, appropriate to the frequency range of observation (4-7 MHz), of correlation distance (or effective scatterer spacing) d, the local variabilities of density and compressibility, gamma rho = delta rho/rho and gamma kappa = delta kappa/kappa 0, and their ratio gamma rho/gamma kappa. For blood, liver, and skeletal muscle, the values derived at 6 MHz for d are approximately 5, 55, and 75 microns and for gamma rho/gamma kappa are 0.5, 0.15, and 0.28, respectively. These results are, in particular, at variance with the commonly made assumption, based on evidence from low-frequency measurements, that the ratio gamma rho/gamma kappa is sufficiently small that density terms can be ignored in calculations of human tissue scattering.  相似文献   

8.
Composite materials of epoxy resins reinforced by carbon fibers are increasingly being used in the construction of aircraft. In these applications, the material may be thermally damaged and weakened by jet blast and accidental fires. The feasibility of using proton NMR relaxation times T1, T1rho, and T2 to detect and quantify the thermal damage is investigated. In conventional spectrometers with homogeneous static magnetic fields, T1rho is readily measured and is found to be well correlated with thermal damage. This suggests that NMR measurements of proton T1rho may be used for non-destructive evaluation of carbon fiber-epoxy composites. Results from T1rho measurements in the inhomogeneous static and RF magnetic fields of an NMR-MOUSE are also discussed.  相似文献   

9.
We report the spin Knight shift (K(s)) and the nuclear spin-lattice relaxation rate (1/T1) in the vortex state as a function of magnetic field (H) up to 28 T in the high-Tc superconductor TlSr2CaCu2O6.8 (Tc = 68 K). At low temperatures well below Tc, both K(s) and 1/T1 measured around the middle point between the two nearest vortices (saddle point) increase substantially with increasing field, which indicate that the quasiparticle states with an ungapped spectrum are extended outside the vortex cores in a d-wave superconductor. The density of states (DOS) around the saddle point is found to be kappaN(0)square root[H/H(c2)], with kappa = 0.5-0.7 and N0 being the normal-state DOS.  相似文献   

10.
Thermal conductivity of Sr3Ru2O7 was measured down to 40 mK and at magnetic fields through the quantum critical end point at Hc=7.85 T. A peak in the electrical resistivity as a function of the field was mimicked by the thermal resistivity. In the limit as T-->0 K, we find that the Wiedemann-Franz law is satisfied to within 5% at all fields, implying that there is no breakdown of the electron despite the destruction of the Fermi liquid state at quantum criticality. A significant change in disorder [from rho0(H=0 T)=2.1 to 0.5 microOmega cm] does not influence our conclusions. At finite temperatures, the temperature dependence of the Lorenz number is consistent with ferromagnetic fluctuations causing the non-Fermi liquid behavior as one would expect at a metamagnetic quantum critical end point.  相似文献   

11.
PURPOSE: Recent studies have proposed that magnetic resonance (MR) T1rho relaxation time is associated with loss of macromolecules. The depletion of macromolecules in the matrix of the intervertebral disc may be an initiating factor in degenerative disc disease. The purpose of this study was to test the feasibility of quantifying T1rho relaxation time in phantoms and intervertebral discs of healthy volunteers using in vivo MR imaging at 3 T. MATERIALS AND METHODS: A multislice T1rho spiral sequence was used to quantify T1rho relaxation time in phantoms with different agarose concentrations and in the intervertebral discs of 11 healthy volunteers (mean age=31.3 years; age range=23-60 years; gender: 5 females, 6 males). RESULTS: The phantom studies demonstrated the feasibility of using spiral imaging at 3 T. The in vivo results indicate that the median T1rho value of the nucleus (116.6+/-21.4 ms) is significantly greater (P<0.05) than that of the annulus (84.1+/-11.7 ms). The correlations between the age of the volunteers and T1rho relaxation time in the nucleus (r2=-0.82; P=0.0001) and the annulus (r2=-0.37; P=0.04) were significant. A trend of decreasing T1rho values from L3-4 to L4-5 to L5-S1 was evident. CONCLUSION: The results of this study suggest that in vivo T1rho quantification is feasible and may potentially be a clinical tool in identifying early degenerative changes in the intervertebral disc.  相似文献   

12.
In this paper, we present the results of measurements of the thermal conductivity of Cu2Te2O5Br2, a compound where tetrahedra of Cu2+ ions carrying S=1/2 spins form chains along the c-axis of the tetragonal crystal structure. The thermal conductivity was measured along both the c- and the a-direction as a function of temperature between 3 and 300 K and in external magnetic fields H up to 69 kOe, oriented both parallel and perpendicular to the c-axis. Distinct features of (T) were observed in the vicinity of TN=11.4 K in zero magnetic field. These features are unaltered in external fields which are parallel to the c-axis, but are more pronounced when a field is applied perpendicularly to the c-axis. The transition temperature increases upon enhancing the external field, but only if the field is oriented along the a-axis.  相似文献   

13.
The transverse relaxation rate (R2=1/T2) of many biological tissues are altered by endogenous magnetized particles (i.e., ferritin, deoxyhemoglobin), and may be sensitive to the pathological progression of neurodegenerative disorders associated with altered brain-iron stores. R2 measurements using Carr-Purcell-Meiboom-Gill (CPMG) acquisitions are sensitive to the refocusing pulse interval (2taucp), and have been modeled as a chemical exchange (CE) process, while R2 measurements using a localization by adiabatic selective refocusing (LASER) sequence have an additional relaxation rate contribution that has been modeled as a R2rho process. However, no direct comparison of the R2 measured using these two sequences has been described for a controlled phantom model of magnetized particles. The three main objectives of this study were: (1) to compare the accuracy of R2 relaxation rate predictions from the CE model with experimental data acquired using a conventional CPMG sequence, (2) to compare R2 estimates obtained using LASER and CPMG acquisitions, and (3) to determine whether the CE model, modified to account for R2rho relaxation, adequately describes the R2 measured by LASER for a full range of taucp values. In all cases, our analysis was confined to spherical magnetic particles that satisfied the weak field regime. Three phantoms were produced that contained spherical magnetic particles (10 microm diameter polyamide powders) suspended in Gd-DTPA (1.0, 1.5, and 2.0 mmol/L) doped gel. Mono-exponential R2 measurements were made at 4T as a function of refocusing pulse interval. CPMG measurements of R2 agreed with CE model predictions while significant differences in R2 estimates were observed between LASER and CPMG measurements for short taucp acquisitions. The discrepancy between R2 estimates is shown to be attributable to contrast enhancement in LASER due to T2rho relaxation.  相似文献   

14.
We report the temperature (T) and perpendicular magnetic-field (B) dependence of the Hall resistivity rho(xy)(B) of dilute metallic 2D holes in GaAs over a broad range of temperature (0.02-1.25 K). The low B Hall coefficient, R(H), is found to be enhanced when T decreases. Strong magnetic fields further enhance the slope of rho(xy)(B) at all temperatures studied. Coulomb interaction corrections of a Fermi liquid (FL) in the ballistic regime can not explain the enhancement of rho(xy) which occurs in the same regime as the anomalous metallic longitudinal conductivity. In particular, although the metallic conductivity in 2D systems has been attributed to electron interactions in a FL, these same interactions should reduce, not enhance, the slope of rho(xy)(B) as T decreases and/or B increases.  相似文献   

15.
We consider, theoretically and experimentally, the effects of structural disorder, quantum fluctuations, and thermal fluctuations in the magnetic and transport properties of certain ferromagnetic alloys. We study the particular case of UCu2Si2-xGex. The low temperature resistivity, rho(T,x), exhibits Fermi liquid behavior as a function of temperature T for all values of x, which can be interpreted as a result of the magnetic scattering of the conduction electrons from the localized U spins. The residual resistivity, rho(0,x), follows the behavior of a disordered binary alloy. The observed nonmonotonic dependence of the Curie temperature, T(c)(x), with x can be explained within a model of localized spins interacting with an electronic bath. Our results clearly show that the Curie temperature of certain alloys can be enhanced due to the interplay between quantum and thermal fluctuations with disorder.  相似文献   

16.
We report the temperature and magnetic field dependence of the in-plane thermal conductivity (kappa(ab)) of high-quality monocrystalline Nd2CuO4. Isothermal measurements of the field dependence of kappa(ab) at low temperatures (2 K相似文献   

17.
The thermal conductivity of the spin-1/2 ladder system Sr14-xCaxCu24O41 ( x = 0, 2, and 12) has been measured both along ( kappa(c)) and perpendicular to ( kappa(a)) the ladder direction at temperatures between 5 and 300 K. While the temperature dependence of kappa(a) is typical for phonon heat transport, an unusual double-peak structure is observed for kappa(c)(T). We interpret this unexpected feature as a manifestation of quasi-one-dimensional magnon thermal transport mediated by spin excitations along the ladders.  相似文献   

18.
The temperature variation of the resistivity rho and specific heat C have been measured for prototypical half-metallic ferromagnets, R0. 6Sr 0.4MnO3, by controlling the one-electron bandwidth W. We have found variations in the temperature scalings of rho from approximately T2 ( R = La, and Nd) to approximately T3 ( R = Sm), and have interpreted the T3 law in terms of the anomalous single-magnon scattering process in the half-metallic system.  相似文献   

19.
Effects of normal-state resistivity rho(n) on the vortex phase diagram at low temperature T have been studied based on dc and ac complex resistivities for thick amorphous MoxSi(1-x) films. It is commonly observed irrespective of rho(n) that, in the limit T=0, the vortex-glass-transition line B(g)(T) is independent of T and extrapolates to a field below the T=0 upper critical field B(c2)(0), indicative of the quantum-vortex-liquid (QVL) phase in the regime B(g)(0)相似文献   

20.
Flux flow was studied over an entire temperature range down to T approximately 2% of T(c) by using intense pulsed current densities to overcome flux-vortex pinning. The resistivity at high vortex velocities is proportional to B and roughly follows rho approximately rho(n)B/H(c2), with a prefactor of order unity. Contrary to some speculation, rho(n) saturates to a finite residual value as T-->0, indicating a metallic (rho-->finite) rather than insulating (rho-->infinity) normal state, and the vortex dissipation continues to be conventional as T-->0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号