首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the framework of effective-mass approximation and variational approach, the luminescent properties are investigated theoretically in self-formed wurtzite GaN/AlxGa1−xN single-quantum dots (QDs). Considering the three-dimensional (3D) confinement of electron and hole pair and the strong built-in electric field effects, the exciton binding energy, the emission wavelength and the oscillator strength are calculated with and without the built-in electric field in detail. The results elucidate that the strong built-in electric field has a significant influence on luminescent properties of GaN/AlxGa1−xN QDs.  相似文献   

2.
The resonant third-order susceptibilities at various directions (both parallel and vertical to Z-axis) in self-assembled quantum dots (QDs) have been investigated. The nonlinear susceptibilities associated with the intraband transition in the conduction band are theoretically calculated for wurtzite InxGa1−xN/GaN-strained cylinder QDs. The confined wave functions and energies of electrons in the dots have been calculated in the effective-mass approximation by solving the 3D Schrödinger equation, in which a strong built-in electric field effect due to the piezoelectricity and spontaneous polarization has been taken into account. Furthermore, it is shown that the magnitude and the resonant position of the nonlinear susceptibility χ(3)(3ω) strongly depend on the dots’ size as well as size distribution.  相似文献   

3.
Atomistic simulations that use the Tersoff empirical potential accurately reproduce the effects of the presence of compositional disorder in strained semiconductor alloys. This method is applied to InGaAs quantum dot islands, for which gradients in the In composition distribution have been observed and accurately measured, and we demonstrate that the internal piezoelectric fields contribute strongly to the nature of the electron wavefunctions. The theoretical predictions are supported by experimental evidence: intersubband absorption measurements confirm that the p-states degeneracy for the electron first excited state is lifted and a minimum splitting of at least 5 meV is to be generally expected.  相似文献   

4.
A modified self-consistent method is introduced for the design of AlxGa1−xN/GaN step quantum well (SQW) with the position and energy-dependent effective mass. The effects of nonparabolicity are included. It is shown that the nonparabolicity effect is minute for the lowest subband energy level and grows in size for the higher subband states. The effects of nonparabolicicty have significant influence on the transition energies and the oscillator strengths and should be taken into account in the investigation of the optical transitions. The strong asymmetric property introduced by the step quantum well magnifies the weak intersubband transition from the ground state to the third state (1→3). It is shown that in an appropriate scope, the intersubband transition (1→3) has the comparable oscillator strength with transition from the ground state to the second one (1→2), which suggests the possible application of the two-color photodetectors. The results of this work should provide useful guidance for the design of optically pumped asymmetric quantum well lasers and quantum well infrared photodetectors (QWIPs).  相似文献   

5.
Separated AlxIn1−xN quantum dots (QDs) embedded in amorphous AlN films have been produced by radio-frequency co-sputtering technique on silicon (1 1 1) and quartz glass substrates. The mean size and density of AlxIn1−xN QDs can be conveniently monitored by deposition parameters. Transparent electron microscope, and X-ray diffraction were used to detect the structure of the AlxIn1−xN QDs system; field-emission scanning-electron microscope was adopted to measure the surface morphology and anticipate the size of the QDs; X-ray photoelectronic spectroscopy was used to measure the stoichiometric ratios of the QDs.  相似文献   

6.
Using near-field scanning optical microscopy (NSOM), we report the spatial distribution of photoluminescence (PL) intensity in III-nitride-based semiconductor layers grown on GaN substrates. Undoped GaN, In0.11Ga0.89N, and In0.13Ga0.87N/GaN multi-quantum wells (MQWs) were grown by metal organic chemical vapor deposition (MOCVD) on freestanding GaN substrates. Micro-Raman spectroscopy has been used to evaluate the crystalline properties of the GaN homoepitaxial layers. The variation of the PL intensity from the NSOM imaging indicates that the external PL efficiency fluctuates from 20% to 40% in the 200 nm InGaN single layer on freestanding GaN, whereas it fluctuates from 20% to 60% in InGaN/GaN MQWs. In the NSOM-PL images, bright island-like features are observed. After deconvolution with the spatial resolution of the NSOM, the size of these features is estimated to be in the range of 150–250 nm.  相似文献   

7.
The variation of the electronic parameters in the subband as a function of the InyGa1−yAs quantum well width in modulation-doped strained AlxGa1−xAs/InyGa1−yAs/GaAs single quantum wells were investigated by means of Shubnikov-de Haas (S-dH) and Van der Pauw Hall-effect measurements. The fast Fourier transform (FFT) of the S-dH oscillations and the Hall-effect data showed that the carrier density and the mobility of the two-dimensional electron gas (2DEG) occupied in the subband increased as the quantum well width increased. The increase in the 2DEG density with increasing the InyGa1−yAs well width originated from an increase in the energy difference between the energy level of the electronic subband and Fermi energy, and the increase in the 2DEG mobility is attributed to a decrease of the scattering source. The electronic subband energies, the corresponding wavefunctions, and the Fermi energies in the AlxGa1−xAs/InyGa1−yAs/GaAs single quantum wells were calculated by a self-consistent method taking into account the exchange-correlation effect together with the strain and nonparabolicity effects. These results indicate that the electronic parameters in AlxGa1−xAs/InyGa1−yAs/GaAs strained single quantum wells are significantly dependent on the quantum well width.  相似文献   

8.
We have performed single dot photoluminescence and time-resolved ensemble photoluminescence measurements on InAs quantum dots embedded in a lateral in-plane p–i–n or n–i–n device, respectively, which makes the application of lateral electric fields, i.e. field direction perpendicular to the growth direction, feasible. Time-resolved measurements show an increase in the radiative lifetime of up to 30% with increasing field. We attribute this to the reduced overlap between the electron and hole wave functions. Single dot spectroscopy revealed a small red-shift of the emission energies of maximum 0.5 meV. This shift can be explained by the quantum confined Stark effect taking into account that the red-shift due to the band-tilting is partly compensated by a decrease in exciton binding energy.  相似文献   

9.
The ground-state binding energy of a hydrogenic donor impurity in wurtzite (WZ) GaN/AlGaN coupled quantum dots (QDs) is calculated by means of a variational method, considering the strong built-in electric fields caused by the piezoelectricity and spontaneous polarizations. The strong built-in electric fields induce an asymmetrical distribution of the ground-state binding energy with respect to the center of the coupled QDs. If the impurity is located at the low dot, the ground-state binding energy is insensitive to the interdot barrier width of WZ GaN/AlGaN coupled QDs.  相似文献   

10.
The effects of an electric field on the interband transitions in InxGa1−xAs/InyAl1−yAs coupled step quantum wells have been investigated both experimentally and theoretically. A InxGa1−xAs/InyAl1−yAs coupled step quantum well sample consisted of the two sets of a 50 Å In0.53Ga0.47As shallow quantum well and a 50 Å In0.65Ga0.35As deep step quantum well bounded by two thick In0.52Al0.48As barriers separated by a 30 Å In0.52Al0.48As embedded potential barrier. The Stark shift of the interband transition energy in the InxGa1−xAs/InyAl1−yAs coupled step quantum well is larger than that of the single quantum well, and the oscillator strength in the InxGa1−xAs/InyAl1−yAs coupled step quantum well is larger than that in a coupled rectangular quantum well. These results indicate that InxGa1−xAs/InyAl1−yAs coupled step quantum wells hold promise for potential applications in optoelectron devices, such as tunable lasers.  相似文献   

11.
Electron Raman scattering (ERS) in wurtzite InxGaN1−x/GaN coupled quantum wells (CQWs) is investigated by effective-mass approximation and second-perturbation approach, including a strong built-in electric field (BEF) effect due to the piezoelectricity and spontaneous polarization. The dependence of differential cross-section (DCS) on structural parameters of CQWs is studied. Our results show that the strong BEF gives rise to a remarkable reduction of the DCS, which is around three orders smaller than that of the CQWs without BEF. With the presence of the BEF, the emitted photon energy decreases about 10 times as a consequence of quantum-confined Stark effect.  相似文献   

12.
13.
We explore the dynamics of harmonically confined single electron quantum dots as a function of dot size under time-dependent magnetic field. The system of interest is a 2-D system in the presence of a perpendicular magnetic field. We show that for given strengths of the confinement potential and effective mass; periodic, as well as exponential variation in the strength of the magnetic field could invite interesting features in the dynamics of the system. Also, the pattern of time evolution of eigenstates of the unperturbed system reveals significant size-dependence. The fluctuation in the magnetic field strength from its initial value is found to modulate the dynamical aspects in a prominent way.  相似文献   

14.
Partial substitution of manganese by cobalt in rare-earth perovskites REMnO3 leads to unusual magnetic phenomena because of the simultaneous presence of Mn3+, Mn4+, Co2+ and Co3+ species. The magnetic nature of the RE cation plays a fundamental role in the magnetic properties. We present herein two specific families: for RE=La the magnetic behavior of the |Co+Mn| network is observed, while for Gd its strong magnetic moment interacts with the transition metals, leading to a spin reversal state. Magnetic interactions are maximized at x=0.50, as if two regimes exist: for x<0.5 Co substitutes Mn in the REMnO3 manganite, and for x>0.5 Mn substitutes Co in the RECoO3 cobaltite.  相似文献   

15.
The second-harmonic generation (SHG) coefficient for cubical quantum dots (CQDs) with the applied electric field is theoretically investigated. Using the compact density-matrix approach and the iterative method, we get the analytical expression of the SHG coefficient. And the numerical calculations for the typical GaAs/AlAs CQDs are presented. The results show that the SHG coefficient can reach the magnitude of 10−5 m/V, about two orders higher than that in spherical quantum dot system. More importantly, the SHG coefficient is not a monotonic function of the length L of CQDs as well as the applied field F. If we select suitable values of F and L, we will get a higher value of the SHG coefficient. In addition, the relaxation rate also affects the SHG coefficient obviously.  相似文献   

16.
The binding energy Eb of the acceptor-exciton complex (A,X) as a function of the radius (or of the impurity position of the acceptor) and the normalized oscillator strength of (A,X) in spherical ZnO quantum dots (QDs) embedded in a SiO2 matrix are calculated using the effective-mass approximation under the diagonalzation matrix technique, including a three-dimensional confinement of the carrier in the QD and assuming a finite depth. Numerical results show that the binding energy of the acceptor-exciton complexes is particularly robust when the impurity position of the acceptor is in the center of the ZnO QDs. It has been clearly shown from our calculations that these physical parameters are very sensitive to the quantum dot size and to the impurity position. These results could be particularly helpful, since they are closely related to experiments performed on such nanoparticles. This may allow us to improve the stability and efficiency of the semiconductor quantum dot luminescence which is considered critical.  相似文献   

17.
Based on the framework of effective-mass approximation and variational approach, optical properties of exciton are investigated theoretically in ZnO/MgxZn1−xO vertically coupled quantum dots (QDs), with considering the three-dimensional confinement of electron and hole pair and the strong built-in electric field effects. The exciton binding energy, the emission wavelength and the oscillator strength as functions of the structural parameters (the dot height, the barrier thickness between the coupled wurtzite ZnO QDs and Mg content x in the barrier layers) is calculated in detail. The results elucidate that Mg content have a significant influence on the exciton state and optical properties of ZnO coupled QDs. When Mg content x increases, the strong built-in electric field increases and leads to the redshift of the effective band gap of the MgxZn1−xO layer. These theoretical results are useful for design and application of some important photoelectronic devices constructed by using ZnO strained QDs.  相似文献   

18.
The third-harmonic generation (THG) coefficient for cylinder quantum dots with an applied electric field is theoretically investigated. Using the compact density-matrix approach and the iterative method, we get the analytical expression of the THG coefficient, and the numerical calculations of the typical GaAs/AlAs cylinder quantum dots are presented. The results show that the THG coefficient can reach the magnitude of 10−9 m2/V 2. Apart from the length LL and radius RR of cylindrical quantum dots, both the parabolic confining potential and an applied electric field can also influence the THG coefficient.  相似文献   

19.
The binding energy of an exciton in a wurtzite GaN/GaAlN strained cylindrical quantum dot is investigated theoretically.The strong built-in electric field due to the spontaneous and piezoelectric polarizations of a GaN/GaAlN quantum dot is included.Numerical calculations are performed using a variational procedure within the single band effective mass approximation.Valence-band anisotropy is included in our theoretical model by using different hole masses in different spatial directions.The exciton oscillator strength and the exciton lifetime for radiative recombination each as a function of dot radius have been computed.The result elucidates that the strong built-in electric field influences the oscillator strength and the recombination life time of the exciton.It is observed that the ground state exciton binding energy and the interband emission energy increase when the cylindrical quantum dot height or radius is decreased,and that the exciton binding energy,the oscillator strength and the radiative lifetime each as a function of structural parameters (height and radius) sensitively depend on the strong built-in electric field.The obtained results are useful for the design of some opto-photoelectronic devices.  相似文献   

20.
The Co-sublattice anisotropy in Lu2Co17 consists of four competitive contributions from Co atoms at crystallographically different sites in the Th2Ni17-type of crystal structure, which result in the appearance of a spontaneous spin-reorientation transition (SRT) from the easy plane to the easy axis at elevated temperatures. In order to investigate this SRT in detail and to study the influence of Si substitution for Co on the magnetic anisotropy, magnetization measurements were performed on single crystals of Lu2Co17−xSix (x=0−3.4) grown by the Czochralski method. The SRT in Lu2Co17 was found to consist of two second-order spin reorientations, “easy-plane”–“easy-cone” at TSR1≈680 K and “easy-cone”–“easy-axis” at TSR2≈730 K. Upon Si substitution for Co, both SRTs shift toward the lower temperatures in Lu2Co16Si (TSR1≈75 K and TSR2≈130 K) with the further onset of the uniaxial type of magnetic anisotropy in the whole range of magnetic ordering for Lu2Co17−xSix compounds with x>1 due to a weakening of the easy-plane contribution from the Co atoms at the 6g and 12k sites to the total anisotropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号