首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
固体推进剂是一种颗粒填充高能聚合物,其破坏时所表现出的一些行为和金属的破坏相比,有明显不同之处。本文利用扫描电镜,给出了受载情况下固体推进剂试件的损伤发展以及裂纹扩展过程。结果表明,损伤的发展过程也就是微裂纹区扩展及微裂纹密度加大的过程,而裂纹扩展过程中的慢速扩展和亚临界扩展的最大区别则是其裂尖损伤区范围不同,同时也表明,裂纹尖端和边缘的微裂纹损伤区尺寸已不容忽略。  相似文献   

2.
Under displacement loading, brittle material softens due to the coalescence of statistically distributed microcracks. Microcracks propagate, coalesce, and eventually reach a stable configuration. The situation is simulated in the present work by a collinear microcrack configuration with the attention focused on the expected crack length. The results indicate that the expected crack length increases by higher microcrack density, less microcrack randomness, and a larger specimen size (scale effect).  相似文献   

3.
脆性断裂的微观机理和非平衡统计特性   总被引:4,自引:0,他引:4  
Ⅰ.引言如何才能将断裂的微观机理与宏观特性结合起来,把断裂理论建立于微裂纹演化的微观动力学基础上,从而统一导出所有重要的宏观力学量并以某些更基本的物理量表示之?这是人们为实现材料的强度和韧性设计必需解决的一个重要理论课题。就脆性断裂来说,尽管现有几个主要代表性的理论如断裂力学理论、位错理论和统计理论都各取得一定成就,但就其理论框架来说,由于明显的局限性,却难以发展成可供指导设计的理论。因此,人们在探索微观与宏观相结合的断裂理论。最近的工作表明:从微裂纹演   相似文献   

4.
杨卫  张宿林 《力学季刊》1997,18(3):189-195
微裂纹串接为宏观灾难性裂纹的过程取决于相邻微裂纹的强相互作用。微裂纹的分布规律影响材料的强度和韧性。本文研究简单的共线微裂纹构型,确定由于微裂纹长度和韧度尺寸的统计分布所产生的影响。研究结果预计了脆性材料的尺度效应,即对于相同密度的微裂纹分布,大尺寸构件的强度比小尺寸构件要低。计算还表明脆性体的强度随微裂纹分布函数标准方差的增加而减小。  相似文献   

5.
Characteristics of microcrack initiation, multiplication and saturation in layered materials are discussed. A probabilistic-analytical method, the ‘characteristic curve method (CCM)’ is developed to correlate the initial defects and the microcrack evolution under static and cyclic loadings. The ‘equivalent applied loading’ and the ‘equivalent crack density’ concepts are introduced to describe different microcrack multiplication features in different layered materials. Microcrack multiplication processes in many layered materials with brittle matrices subjected to static and cyclic loadings can be easily predicted.  相似文献   

6.
The general asymptotic solution of macrocrack interaction with an arbitrary field of microcracks is modified to the case where microcracks are located around a main crack. A comparison with the solution for a semi-infinite crack is discussed. The shielding-amplification zones are identified in terms of the distance from the microcrack to the main crack of finite size.  相似文献   

7.
A micromechanical model for cementitious composite materials is described in which microcrack initiation, in the interfacial transition zone between aggregate particles and cement matrix, is governed by an exterior-point Eshelby solution. The model assumes a two-phase elastic composite, derived from an Eshelby solution and the Mori–Tanaka homogenization method, to which circular microcracks are added. A multi-component rough crack contact model is employed to simulate normal and shear behaviour of rough microcrack surfaces. The development of the microcrack initiation criterion and the rules adopted for microcrack evolution are a particular focus of the paper. Finally, it is shown, on the basis of several numerical simulations, that the model captures key characteristics of the behaviour of cementitious composites such as concrete.  相似文献   

8.
We investigate the influence of distributed microcracks on the overall diffusion properties of a porous material using the self-similar cascade continuum micromechanics model within the framework of mean-field homogenization and computational homogenization of diffusion simulations using a high-resolution pixel finite element method. In addition to isotropic, also anisotropic crack distributions are considered. The comparison of the results from the cascade continuum micromechanics model and the numerical simulations provides a deeper insight into the qualitative transport characteristics such as the influence of the crack density on the complexity and connectivity of crack networks. The analysis shows that the effective diffusivity for a disordered microcrack distribution is independent of the absolute length scale of the cracks. It is observed that the overall effective diffusivity of a microcracked material with the microcracks oriented in the direction of transport is not necessarily higher than that of a material with a random orientation of microcracks, independent of the microcrack density.  相似文献   

9.
Investigated is a crack problem for an array of collinear microcracks in composite matrix. Inclusions are situated in between the neighbouring microcracks tips and exhibit different elastic properties than matrix. The problem is solved using the technique of distributed dislocations. A developed approximate fundamental solution for a single dislocation lying in a general point between inclusions is employed in the distribution of continuously distributed dislocation to cracks modelling. Stress intensity factor is calculated for various cracks/inclusions geometries and elastic moduli mismatches. Stability and/or instability of the straight microcrack paths is investigated for slowly growing microcracks with inclusions located in between the neighbouring microcracks tips. Applications to periodic microcrack tunnelling and microcracks weakening ahead of the main crack are discussed.  相似文献   

10.
The molecular dynamics method is used to simulate microcrack healing during heating or/and under compressive stress. A centre microcrack in Cu crystal would be sealed under compressive stress or by heating. The role of compressive stress and heating in crack healing was additive. During microcrack healing, dislocation generation and motion occurred. When there were pre-existing dislocations around the microcrack, the critical temperature or compressive stress necessary for microcrack healing would decrease, and, the higher the number of dislocations, the lower the critical temperature or compressive stress. The critical temperature necessary for microcrack healing depended upon the orientation of the crack plane. For example, the critical temperature for the crack along the (001) plane was the lowest, i.e. 770K. The project supported by the Special Fund for the Major State Basic Research Projects (No. G19990650) and by the National Natural Science Foundation of China (No. 19891180, 59871010)  相似文献   

11.
Finite element analysis on evolution process for damage microcrack healing   总被引:1,自引:0,他引:1  
Based on the thermal kinetic and mass conservation, a series of controlling equations for the finite element are derived and related programs are developed to simulate the damage microcrack healing process controlled by surface diffusion. Two kinds of typical models for microcrack splitting are proposed, i.e., the grain boundary energy existing on the crack surface and residual stresses applying on the crack surface. And the conditions of microcrack splitting in the two models are given as a function of the microcrack aspect ratio. The microcrack with traction-free surfaces will directly evolve into a spheroid. The project supported by the National Natural Science Foundation of China (19972053 and 59889101), and the National Outstanding Young Scientist Fund of China (59925104)  相似文献   

12.
为给塑性黏结炸药(PBX)的力学强度设计提供支撑、探索材料细观特征量与材料强度之间的定量规律,应用微裂纹扩展区理论,将PBX炸药的单轴拉伸过程中力学响应特征的变化归结为扩展裂纹取向角度的增加,将扩展裂纹最大取向角与拉伸强度相关联,构建了基于材料细观特征量的拉伸强度理论模型,并采用不同温度的单轴拉伸实验验证了该理论模型的有效性。研究表明:该拉伸强度理论模型可以实现对PBX炸药拉伸强度与炸药微裂纹密度、颗粒/黏结剂界面性能以及颗粒/黏结剂体系的表观杨氏模量、泊松比等细观特征量之间关系的定量描述。  相似文献   

13.
Microcracks have great significance for shear strength of brittle rock in compression. A major challenge of this area is to establish the correlation of microcracks and macroscopic shear strength. A new micro–macro method is presented to predict the shear strength of brittle rock in compression. This method incorporates the microcrack model suggested by Ashby, Mohr–Coulomb failure criterion and a crack-strain relation. This crack–strain relation is presented to link the crack growth and axial strain by combining the micro and macro definitions from rock damage. The shear strength and stress–strain relationship of Jinping marble are theoretically investigated in detail. The rationality of this suggested method is verified by using the experimental results founded on Jinping marble. Effects of the initial microcrack size, friction coefficient and confining pressure on internal friction angle, cohesion, and shear strength are also discussed.  相似文献   

14.
为研究砂岩型铀矿爆破增渗地浸开采过程中赋矿岩层的破坏特征及损伤演化规律, 利用带有应变控制环的SHPB实验系统,对砂岩试样进行控制应变条件下的动态冲击实验,并结合波速测试实验和CT扫描实验,分析研究了砂岩试样的整体破坏过程、裂纹分布及应变-损伤演化规律。实验结果表明:在冲击荷载作用下,当应变值超过0.008 3时,砂岩试样会突然出现明显的整体破坏,整体破坏形式近似双锥形,其破坏模式为剪切-张拉混合破坏;随着应变的增加,裂纹的产生及扩展大致分为无裂纹阶段(0~0.003 3)、微裂纹起裂阶段(0.003 3~0.008 3)、裂纹贯通阶段(0.008 3~0.009 9)3个阶段,且裂纹分布区域主要集中在试样中间外围。分别从宏观、细观两方面建立了应变-损伤之间的定量关系式,损伤变量随应变的增长趋势大致分为两个阶段:平缓发展区(0~0.008 3)和迅速增长区(0.008 3~0.011 5),损伤变量随应变增加并非简单的线性增加,而是应变值超过应变损伤阈值之后损伤程度急剧增加,应变损伤阈值为0.008 3。  相似文献   

15.
非平衡统计断裂力学基础   总被引:16,自引:3,他引:13  
邢修三 《力学进展》1991,21(2):153-168
非平衡统计断裂力学是用非平衡统计概念和方法结合微裂纹(或微空洞)演化动力学从微观机理推导出宏观力学量的断裂理论.它以微裂纹演化方程为核心,结合从微观机理求得的微裂纹长大速率和成核率以及最小强度原理,统一导出微裂纹分布函数、断裂概率、可靠性、失效率、损伤断裂动力学方程、强度、韧度和寿命等各种与断裂有关的力学量的统计分布函数、统计平均值和统计涨落.本文理论可广泛适用于金属和结构陶瓷的脆性、疲劳、延时和环境断裂等多种断裂类型.本文通过金属的脆性、疲劳和延时断裂,扼要综述了上述主要思想、方法和结果.   相似文献   

16.
We aim to derive a damage model for materials damaged by microcracks. The evolution of the cracks shall be governed by the maximum energy release rate, which was recently shown to be a direct consequence of the variational principle of a body with a crack (Arch. Appl. Mech. 69 (5) (1999) 337). From this, we get the path of the growing crack by introducing a series of thermodynamically equivalent straight cracks. The equivalence of the energy dissipated by microcrack growth and the damage dissipation leads to our damage evolution law. This evolution law will be embedded in a finite deformation framework based on a multiplicative decomposition into elastic and damage parts. As a consequence of this, we can present the anisotropic damaged elasticity tensor with the help of push and pull operations. The connection of this approach to other well known damage theories will be shown and the advantages of a finite element framework will be worked out. Numerical examples show the possibilities of the proposed model.  相似文献   

17.
压电材料中的微裂纹屏蔽问题分析   总被引:2,自引:0,他引:2  
分析当主裂纹与一个微裂纹在远场I型力(KI)和远场电位移(Ke)作用下的相互干涉问题,得出了在微裂纹的位置角和方向角周时独立变化时,微裂纹对主裂纹的屏蔽作用的全局使命主裂纹扩展,通过电算还发现Ortiz在各向同性材料和各向异性材料中得出的“微裂纹群对主裂纹最大屏蔽效应产生在微裂纹方向与最大主应力垂直的方向”在压电材料中不再成立,进而提出除Hutchinson指出微裂纹屏蔽效应两个来源(即:材料有效刚度的降低和残余应力的释放)外的另一个来源,微裂纹对主裂砂电场的扰动,在对主微裂纹J积分分析时发现J2积分与J1积分具有同等重要的地位。  相似文献   

18.
Mechanism interaction between cracks with different orientation angles is analyzed based on the principle of superposition and a flattening method. It is found that the maximum interaction effect does not occur when the microcrack is along the direction parallel or perpendicular to the principal tensile stress, which is different from the conclusion drawn by Ortiz (1987). The mechanism of microcrack generation and the effect of the microcrack zone on the main crack tip are studied. It is concluded that the microcrack zone has effect on the main crack tip, which increases with the increase of microcrack density and length.  相似文献   

19.
动态压缩荷载作用下,脆性岩石内部动态细观裂纹扩展特性,对岩石宏观动态力学特性有着重要的影响。然而,对岩石内部动态细观裂纹扩展与宏观动态力学特性的关系研究较少。基于准静态裂纹扩展作用下的应力-应变本构模型、准静态与动态裂纹扩展断裂韧度关系、裂纹速率与应变率关系模型及应变率与动态断裂韧度关系,提出了一种基于细观力学的动态应力-应变本构模型。其中裂纹速率与应变率关系,是根据裂纹长度与应变关系的时间导数推出;应变率与动态断裂韧度关系,是根据推出的裂纹速率及应变率关系,与裂纹速率及断裂韧度关系相结合而得到。研究了应变率对应力-应变本构关系及动态压缩强度影响。并通过试验结果验证了模型的合理性。讨论了岩石初始损伤、围压、模型中参数m、ε0和R对应力-应变关系、动态压缩强度和动态弹性模量的影响。研究结果可为动态压缩荷载作用下深部地下工程脆性围岩稳定性分析提供了一定的理论支持。  相似文献   

20.
The paper provides development of the model of anisotropic damage by microcracking proposed by Bargellini et al. 2006. This model is based on a discrete approach, which introduces a finite set of microcrack densities associated with fixed directions. This approach avoids inconveniences encountered when using a single second order tensor damage variable D (non uniqueness of the free energy) and strain decomposition into positive and negative parts (spurious dissipation at crack closure). Frictional sliding on closed microcracks is introduced as an additional dissipative mechanism; it is represented by a second order sliding variable in each damage direction. Corresponding sliding criteria and non-associated sliding evolution laws, formulated in the strain space for the model coherence, permit to account for hysteretic phenomena. Unilateral effect is taken into account; Young's and shear moduli are correctly restored at microcrack closure. The crucial requirements of continuity of the energy and of stress–strain response are ensured through relevant conditions on parameters and sliding variables values at opening-closure. The discrete approach, associated with some hypotheses concerning damage evolution, permits to couple damage and dissipative sliding. The pertinence of the proposed theory is illustrated by simulating first elastic properties at constant damage, then by considering a specific loading path involving both damage and friction evolutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号