首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We predict ultraslow collapse of “tubular image states” (TIS) on material surfaces. TIS are bound Rydberg-like electronic states formed at large distances (∼30 nm) from the surfaces of suspended circularly-symmetric nanowires, such as metallic C nanotubes. The states are formed in potential wells, resulting from a combination of the TIS-electron attraction to image charges in the nanotube and its centrifugal repulsion, caused by spinning around the tube. We demonstrate that TIS can collapse on the tube surface by passing their angular momentum l to circularly polarized flexural phonons excited in the tube. Our analysis shows that for highly detached TIS with l ? 6 the relaxation lifetimes are of the order of 10 ns-1 μs, while for l < 6 these lifetimes are reduced by several orders of magnitude.  相似文献   

2.
We study theoretically the interactions of excitonic states with surface electromagnetic modes of small-diameter (≲1 nm) semiconducting single-walled carbon nanotubes. We show that these interactions can result in strong exciton-surface-plasmon coupling. The exciton absorption lineshape exhibits the line (Rabi) splitting ∼0.1–0.3 eV as the exciton energy is tuned to the nearest interband surface plasmon resonance of the nanotube so that the mixed strongly coupled surface plasmon-exciton excitations are formed. We discuss possible ways to bring the exciton in resonance with the surface plasmon. The exciton-plasmon Rabi splitting effect we predict here for an individual carbon nanotube is close in its magnitude to that previously reported for hybrid plasmonic nanostructures artificially fabricated of organic semiconductors deposited on metallic films. We expect this effect to open up paths to new tunable optoelectronic device applications of semiconducting carbon nanotubes.  相似文献   

3.
《Physics letters. A》2019,383(17):2106-2109
We theoretically study the interface states of liquid surface waves propagating over the heterojunctions formed by a bottom with one-dimensional periodic undulations. By considering the periodic structure as a homogeneous one, our systematic study shows that the signs of the effective depth and gravitational acceleration are opposite within the band gaps whether the structure is symmetric or not. Those effective parameters can be used to predict the interface states which could amplify the amplitudes of liquid surface waves. These phenomena provide new opportunities to control the localization of water-wave energy.  相似文献   

4.
We predict that surface optical Bloch oscillations can exist in semi-infinite waveguide arrays with a linear index variation, if the array parameters close to the boundary are appropriately perturbed. The perturbation is such that the surface states obtain the Wannier-Stark ladder eigenvalues of the unperturbed infinite array. The number of waveguides, whose parameters need to be controlled, decreases with increasing ratio of index gradient over coupling. The configuration can find applications as a "matched" termination of waveguide arrays to eliminate the distortion of Bloch oscillations due to reflection on the boundaries.  相似文献   

5.
Subthreshold photoelectron emission was observed to emerge from palladium nanoclusters formed on pyrographite surface under irradiation by photons in the energy range 3.1–6.5 eV. The average size of the palladium nanoclusters on the pyrographite surface was 50–80 nm, and the average height, 2–4 nm. Besides conventional photoemission from states below the Fermi level, photoelectron emission was observed at the energies of photons irradiating the surface 0.9 eV below the work function of the Pd surface. It is assumed that this emission is stimulated by direct electron transitions from Pd states below the Fermi level to the unfilled electron surface states formed in the Coulomb potential of image forces (image states) and, subsequently, into vacuum. This phenomenon is assumed to originate from the contact spot field generated above the surface which is nonuniform in work function. This assumption is supported by the calculations presented in the paper.  相似文献   

6.
The first experimental evidence for the existence of image-potential states in carbon nanotubes is presented. The observed features constitute a new class of surface image states due to their quantized centrifugal motion. Measurements of binding energies and the temporal evolution of image state electrons were performed using femtosecond time-resolved photoemission. The associated lifetimes are found to be significantly longer than those of n=1 image state on graphite, indicating a substantial difference in electron decay dynamics between tubular and planar graphene sheets.  相似文献   

7.
A Weyl semimetal (WSM) features Weyl fermions in its bulk and topological surface states on surfaces, and is novel material hosting Weyl fermions, a kind of fundamental particles. The WSM was regarded as a three‐dimensional version of “graphene” under the illusion. In order to explore its promising photoelectric properties and applications in photonics and photoelectronics, here, we study the anisotropic linear and nonlinear optical responses of a WSM TaAs, which are determined by the relationship and balance between its topological surface states and Weyl nodes. We demonstrate that topological surface states which break the bulk symmetry are responsible for the anisotropy of the mobility, and the anisotropic nonlinear response shows saturable characteristic with extremely large saturable intensity. We also find that the mobility is anisotropic with the magnitude of 104 cm2V−1s−1 at room temperature and can be accelerated by the optical field. By analyzing the symmetry, the nonlinear response is mainly contributed by the fermions close to the Weyl nodes, and is related to the Pauli's blocking of fermions, electron‐electron interaction. This work experimentally discovers the anisotropic ultrahigh mobility of WSMs in the optical field and may start the field for the applications of WSMs in photonics and photoelectronics.

  相似文献   


8.
We study the proximity effect between an s-wave superconductor and the surface states of a strong topological insulator. The resulting two-dimensional state resembles a spinless px+ipy superconductor, but does not break time reversal symmetry. This state supports Majorana bound states at vortices. We show that linear junctions between superconductors mediated by the topological insulator form a nonchiral one-dimensional wire for Majorana fermions, and that circuits formed from these junctions provide a method for creating, manipulating, and fusing Majorana bound states.  相似文献   

9.
We investigate the steady states and dynamical instabilities resulting from "particles" depositing on (fusion) and pinching off (fission) a fluid membrane. These particles could be either small lipid vesicles or isolated proteins. In the stable case, such fusion/fission events suppress long wavelength fluctuations of the membrane. In the unstable case, the membrane shoots out long tubular structures reminiscent of endosomal compartments or folded structures which bear a morphological resemblance to internal membranes of the cell.  相似文献   

10.
We demonstrate that reflectance difference spectroscopy (RDS) is sensitive to defects induced by ion bombardment, located either in the topmost layer or in the subsurface region. Most importantly, these two kinds of defects can be spectrally discriminated, since the corresponding signatures in the RD spectrum arise from perturbations of different types of electronic states: The defects in the topmost surface layer mainly lead to a quenching of the optical anisotropy related to surface states, whereas the subsurface defects strongly affect the optical anisotropy originating from transitions between surface‐modified bulk electronic states. Consequently, RDS can be used to simultaneously monitor the defects in the topmost surface layer and in the subsurface region in‐situ during ion bombardment and thermal annealing.

  相似文献   


11.
We have investigated the influence of the vacuum level upon the growth of carbon nanotubes (CNTs) on 6H-SiC () surface.CNTs of about 160 nm in length were formed densely and uniformly on the 6H-SiC surface during annealing at 1700 °C in a high vacuum (∼10−2 Pa). CNTs of about 1 μm in length were formed during annealing at 1700 °C in an ultra-high vacuum (∼10−7 Pa). However, CNTs were not formed and SiO2 layers were formed on the SiC surface at 1700 °C in air. It is found that longer CNTs can grow up in an ultra-high vacuum, moreover, a little aligned and low-density graphite layers, or carbon nanofibers can also grow up.  相似文献   

12.
Properties of surface defect states of CdTexS1 − x quantum dots with an average diameter of 7 nm are investigated experimentally. The stoichiometric ratio is found to be for by use of the energy dispersive analysis of x-ray. The photoluminescence spectrum, the photoluminescence excitation spectrum, and the surface passivation are adopted to characterize the properties of surface defect states. The energy levels of surface defect states of CdTexS1 − x quantum dots are also determined.  相似文献   

13.
We predict the existence of surface gap modes, known as Tamm states for electronic systems, in truncated photonic crystals formed by two types of dielectric rods. We investigate the energy threshold, dispersion, and modal symmetries of the surface modes, and also demonstrate the existence and tunability of nonlinear Tamm states in binary photonic crystals with nonlinear response.  相似文献   

14.
X-ray and uv induced photoelectron spectroscopy have provided information on the various molecular states of nitrogen formed on polycrystalline iron surfaces from dinitrogen and ammonia. At 85 K two distinct states are observed with N2(g) which have N(1s) binding energy values of 405.3 and 400.2 eV. These are in equilibrium with N2(g), are weakly held, and are desorbed on warming to 290 K leaving a nitrogen free surface. The two states are assigned to a molecularly adsorbed
and linear
species the former characterised by an N(1s) value of 400.2 eV and the latter by 405.3 eV. At 290 K nitrogen is adsorbed with a very low sticking probability (?10?6) giving rise to an N(1s) value of 397.2 eV. This is undoubtedly the dissociatively chemisorbed
species. At a nitrogen pressure of l Torr adsorption is “instantaneous” and the N(1s) value is 397 eV. No evidence for the unstable bridged and linear forms of nitrogen is obtained at 290 K although they may well be precursors to the formation of the strongly chemisorbed nitrogen species. Shifts in the N(1s) binding energy induced by subsequent oxygen adsorption are discussed briefly. At 85 K ammonia adsorbs largely in the molecular form with a broad N(1s) peak centred at about 400 eV but on warming to 290 K this splits to give two peaks one at 397 eV and the other at 400 eV. Interaction at 290 K leads to a dominant peak at 397.2 eV and a subidiary one at 400 eV. Helium (1) spectra support the assignment of the 397.2 eV peak to dissociated species (N, NH) and the 400 eV peak to molecular adsorption. The conclusions with N2 and NH3 are substantiated further by comparing the data with results for nitric oxide. The concentration of nitrogen adatom species formed from NO at 290 K and 10?6 Torr is some ten times that formed from N2 at 1 Torr and three times that from NH3 at 10?6 Torr and the same temperature.  相似文献   

15.
16.
We argue that the scanning tunneling microscope (STM) images of resonant states generated by doping Zn or Ni impurities into Cu-O planes of BSCCO are the result of quantum interference of the impurity signal coming from several distinct paths. The impurity image seen on the surface is greatly affected by interlayer tunneling matrix elements. We find that the optimal tunneling path between the STM tip and the metal (Cu, Zn, or Ni) d(x(2)-y(2)) orbitals in the Cu-O plane involves intermediate excited states. This tunneling path leads to the fourfold nonlocal filter of the impurity state in Cu-O plane that explains the experimental impurity spectra. Applications of the tunneling filter to the Cu vacancy defects and "direct" tunneling into Cu-O planes are also discussed.  相似文献   

17.
Subthreshold photoemission from copper nanoclusters formed on the SiO2 surface has been observed under irradiation of the surface by photons in the 3.1–6.5-eV energy range. The average size of copper nanoclusters on the silicon oxide surface is 250–500 nm. Besides the conventional photoemission from the filled Shockley surface state (SS), strong photoemission has been recorded at incident photon energies of 0.5 eV below the work function of the copper surface. This emission is assumed to be generated in direct electron transitions from the SS state to the unfilled electron surface states formed by the Coulomb image potential, followed by escape from these states into vacuum.  相似文献   

18.
The concept of frustrated phase separation is applied to investigate its consequences for the electronic structure of the high T c cuprates. The resulting incommensurate charge density wave (CDW) scattering is most effective in creating local gaps in k-space when the scattering vector connects states with equal energy. Starting from an open Fermi surface we find that the resulting CDW is oriented along the (10)- and (or) (01)-direction which allows for a purely one-dimensional or a two-dimensional “eggbox type” charge modulation. In both cases the van Hove singularities are substantially enhanced, and the spectral weight of Fermi surface states near the M-points, tends to be suppressed. Remarkably, a leading edge gap arises near these points, which, in the eggbox case, leaves finite arcs of the Fermi surface gapless. We discuss our results with repect to possible consequences for photoemission experiments. Received 14 June 1999  相似文献   

19.
We predict that interfaces of periodically curved waveguide arrays can support a novel type of surface states which exist in a certain region of modulation parameters associated with the band flattening. Such linear surface states appear in truncated but otherwise perfect (defect-free) lattices as a direct consequence of the periodic modulation of the lattice potential. We show that the existence of these modes in different band gaps can be flexibly controlled by selecting the modulation profile, with no restrictions on Bloch-wave symmetries characteristic of Shockley states.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号