首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Motivated by the long-standing unresolved enigma of the relaxor ferroelectric ground state, we performed a high-resolution heat capacity and polarization study of the field-induced phase transition in the relaxor ferroelectric single crystal Pb(Mg_{1/3}Nb_{2/3})O_{3} (PMN) oriented along the [110] direction. We show that the discontinuous evolution of polarization as a function of the electric field or temperature is a consequence of a true first order transition from a glassy to ferroelectric state, which is accompanied by an excess heat capacity anomaly and released latent heat. We also find that in a zero field there is no ferroelectric phase transition in bulk PMN at any temperature, indicating that the nonergodic dipolar glass phase persists down to the lowest temperatures.  相似文献   

2.
The relationship between magnetic order and ferroelectric properties has been investigated for MnWO4 with a long-wavelength magnetic structure. Spontaneous electric polarization is observed in an elliptical spiral spin phase. The magnetic-field dependence of electric polarization indicates that the noncollinear spin configuration plays a key role for the appearance of the ferroelectric phase. An electric polarization flop from the b direction to the a direction has been observed when a magnetic field above 10 T is applied along the b axis. This result demonstrates that an electric polarization flop can be induced by a magnetic field in a simple system without rare-earth 4f moments.  相似文献   

3.
The olivine compound Mn(2)GeO(4) is shown to feature both a ferroelectric polarization and a ferromagnetic magnetization that are directly coupled and point along the same direction. We show that a spin spiral generates ferroelectricity, and a canted commensurate order leads to weak ferromagnetism. Symmetry suggests that the direct coupling between the ferromagnetism and ferroelectricity is mediated by Dzyaloshinskii-Moriya interactions that exist only in the ferroelectric phase, controlling both the sense of the spiral rotation and the canting of the commensurate structure. Our study demonstrates how multicomponent magnetic structures found in magnetically frustrated materials like Mn(2)GeO(4) provide a new route towards functional materials that exhibit coupled ferromagnetism and ferroelectricity.  相似文献   

4.
Usual ferroelectric compounds undergo a paraelectric-to-ferroelectric phase transition when the susceptibility of the electric polarization density changes its sign. The temperature is the only thermodynamic field that governs the phase transition. Chiral tilted smectics may also present an improper ferroelectricity when there is a tilt angle between the average long axis direction and the layer normal. The tilt angle is the order parameter of the phase transition which is governed by the temperature. Although the electric susceptibility remains positive, a polarization proportional to the tilt appears due to their linear coupling allowed by the chiral symmetry. Further complications come in when the chirality increases, as new phases are encountered with the same tilt inside the layers but a distribution of the azimuthal direction which is periodic with a unit cell of two (SmC(A)*, three (SmC(Fi1)*, four (SmC(Fi2)* or more (SmC(alpha)* layers. In most of these phases, the layer normal is a symmetry axis so there is no macroscopic polarization except for the SmC(Fi1)* in which the average long axis is tilted so the phase is ferrielectric. By studying a particular compound with only a SmC(Fi2)* and a SmC(alpha)* phase, we show that we recover the uniformly tilted ferroelectric SmC* when applying an electric field. We are thus led to build field-temperature phase diagrams for this class of compounds by combining different experimental techniques described here.  相似文献   

5.
We show that long-range ferroelectric and incommensurate magnetic order appear simultaneously in a single phase transition in Ni3V2O8. The temperature and magnetic-field dependence of the spontaneous polarization show a strong coupling between magnetic and ferroelectric orders. We determine the magnetic symmetry using Landau theory for continuous phase transitions, which shows that the spin structure alone can break spatial inversion symmetry leading to ferroelectric order. This phenomenological theory explains our experimental observation that the spontaneous polarization is restricted to lie along the crystal b axis and predicts that the magnitude should be proportional to a magnetic order parameter.  相似文献   

6.
李武  许煜寰  李仲荣  王虹 《物理学报》1989,38(7):1290-1298
对六种钨青铜结构的铌酸盐铁电晶体进行了从15K到室温范围的介电特性及热电特性的研究。分析其介电特性和热电特性与极化电场的关系,用X射线粉末衍射进行佐证。证实在50—70K的范围内,SBN,PBN,KNSBN三类铁电钨青铜型铌酸盐晶体均存在着一个新的相变。相变是由点群4mm铁电相到点群mm2铁电相的转变。铁电自发极化方向由四方晶胞的e轴方向转变到正交晶胞的b轴方向。介电特性的高频及低频测量表明该相变具有扩散(或称瀰散)型特征。比热的实验结果证明相变是属于高于一阶相变的高阶相变。对相变前 关键词:  相似文献   

7.
The domain states and phase transitions in 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 single crystals were investigated by studying their relative permittivity under various dc bias at constant heating and cooling rates. The orientation dependence of the bias field effect was revealed by examining the temperature dependence of relative permittivity as a function of crystal orientation (the 〈111〉, 〈011〉 and 〈001〉 directions) and dc bias field. The crystals basically have a macrodomain rhombohedral ferroelectric state in the ferroelectric phase under zero dc bias. External bias field could modulate the domain state and induce a stable macrodomain state in the crystals. Also, it is proposed that the dc bias applied along the 〈001〉 or 〈011〉 direction could induce a tetragonal ferroelectric phase or an orthorhombic ferroelectric phase, respectively, in an intermediate temperature range.  相似文献   

8.
Cupric oxide is multiferroic at unusually high temperatures. From density functional calculations we find that the low-T magnetic phase is paraelectric, and the higher-T one is ferroelectric with a size and direction of polarization in good agreement with experiments. By mapping the ab?initio results on to an effective spin model, we show that the system has a manifold of almost degenerate ground states. In the high-T magnetic state noncollinearity and inversion symmetry breaking stabilize each other via the Dzyaloshinskii-Moriya interaction. This leads to an unconventional mechanism for multiferroicity, with the particular property that nonmagnetic impurities enhance the effect.  相似文献   

9.
Based on the transverse Ising model and using decoupling approximation to the Fermi-type Green's function, we study the phase transition properties of the epitaxial ferroelectric film with one substrate. A general recursive equation of the ferroelectric thin film with two n-layer materials is obtained, which enables us to study the phase transition properties for any number layers forepitaxial ferroelectric thin film. With the help of this equation, we analyze the effect of the exchange interaction and the transverse field in the phase diagram, the influence to the polarizations and Curie temperature numerically. The results show that epitaxial ferroelectric film are able to induce a strong increase or decrease of Curie temperature to different exchange interactions and transverse fields within the epitaxial film layers. The theoreticalresults are in reasonable accordance with experimental data of different ferroelectric thin film.  相似文献   

10.
We show that lead zirconate titanate thin films undergo local phase decomposition during fatigue. The original remanent polarization of the fatigued film is completely restored after furnace annealing in an O2 atmosphere, following a significant regrowth of a perovskite phase from the pyrochlorelike structure. By comparing our data with other researchers' work on annealing of fatigued ferroelectric samples, we conclude that local phase separation is the generic reason for electrical fatigue in ferroelectrics. A fatigue model is proposed in order to interpret our experimental data.  相似文献   

11.
A nematic liquid crystalline phase is considered whose rod-like non-centrosymmetric molecules possess a permanent dipole moment. This phase is a “liquid ferroelectric” if all the molecules are oriented along the same “preferred” direction. It is shown that a liquid ferroelectric can not exist in a homogeneous nematic state. It is transformed into a more stable helical structure (the vector of the spontaneous polarization of such a structure rotates aroung the helical axis). There is a variety of domain structures for the specific case when the anisotropy coefficient of the polarization is equal to zero. Since each elementary dipole moment is rigidly bound to its molecule, the “preferred” alignment direction of the rod-like molecules as well as the polarization vector rotates with respect to the same axis in a helical manner. Therefore a nematic phase with a nonzero spontaneous polarization has a cholesteric structure. Its helical pitch is determined by the geometric size of the sample, the absolute value of the spontaneous polarization, and the elastic moduli. Apparently, we can consider some cholesteric phases to be liquid ferroelectrics with helical domain structure.  相似文献   

12.
The dependences of the phase transition temperature of ferroelectric nanocrystals in a dielectric matrix on the point charged defect concentration have been obtained. The influence of point defects on the nonlinear characteristics of ferroelectric nanocrystals has been studied as a function of the strength and direction of an external electric field with the adequate inclusion of depolarizing electric fields and nonlocal effects.  相似文献   

13.
TbMnO3 is an orthorhombic insulator where incommensurate spin order for temperature T(N)<41 K is accompanied by ferroelectric order for T<28 K. To understand this, we establish the magnetic structure above and below the ferroelectric transition using neutron diffraction. In the paraelectric phase, the spin structure is incommensurate and longitudinally modulated. In the ferroelectric phase, however, there is a transverse incommensurate spiral. We show that the spiral breaks spatial inversion symmetry and can account for magnetoelectricity in TbMnO3.  相似文献   

14.
We show that light drives large-amplitude structural changes in thin films of the prototypical ferroelectric PbTiO3 via direct coupling to its intrinsic photovoltaic response. Using time-resolved x-ray scattering to visualize atomic displacements on femtosecond time scales, photoinduced changes in the unit-cell tetragonality are observed. These are driven by the motion of photogenerated free charges within the ferroelectric and can be simply explained by a model including both shift and screening currents, associated with the displacement of electrons first antiparallel to and then parallel to the ferroelectric polarization direction.  相似文献   

15.
李诚迪  赵敬龙  仲崇贵  董正超  方靖淮 《物理学报》2014,63(8):87502-087502
EuTiO_3是钙钛矿结构的量子顺电体,实验发现其基态具有平面各向异性G类反铁磁结构,本文运用基于密度泛函理论的第一性原理计算研究了EuTiO_3处于量子顺电相和应力作用下处于铁电四方相时可能的自旋取向和自旋交换耦合作用,分析了自旋耦合作用的路径,探讨了应力对磁性交换路径的作用,结果发现:当体系自由时,EuTiO_3具有自旋沿[110]方向平面内单轴各向异性的G类反铁磁结构,该结构下Eu离子4f电子自旋通过处于面心位置的O 2p实现自旋反铁磁性的超交换耦合,而在外加应力诱导的铁电四方结构下,由于自旋交换路径中Eu—O—Eu键角改变,Eu 4f电子自旋实现了[110]方向的铁磁交换耦合。  相似文献   

16.
Bax Sr1-x TiO3 精细结构的第一性原理研究   总被引:2,自引:0,他引:2  
为了研究钛酸锶(SrTiO3,ST)中随Ba的掺入,其晶体从顺电相到铁电相的变化过程及四方相钛酸锶钡(BaxSr1-xTiO3,BST)的铁电性.在广义梯度近似下,利用超软赝势平面波方法计算了不同Ba/Sr摩尔比BST的总能量,确定了BST的精细结构.结果表明,在钛酸锶晶体中,随着Ba的掺入,晶胞体积膨胀, c/a比值增大,有利于晶体结构中正负离子的分离和自发极化的产生.在四方相Ba0. 8Sr0. 2TiO3 中, Ti离子沿[001]方向发生了8pm的偏心位移,从而表现出四方相BST的铁电性.  相似文献   

17.
为拓展高功率微波阵列天线的波束扫描范围, 将铁电体移相器引入到高功率微波领域。分析铁电体移相器的工作原理, 并研究其应用于高功率微波领域可能遇到的问题, 利用时域有限差分法对高功率微波在铁电体材料中传播的简单模型进行分析, 研究了微波功率及偏置电场对输出波形的影响, 并进一步分析铁电体移相器应用于高功率微波领域的可行性。结果表明:在不考虑介质损耗的情形下, 选择适当的铁电体材料可以在10 cm内实现L波段180相移, 同时传输效率达到90%以上。  相似文献   

18.
邹忠飞  李静  唐先柱  张然  郑致刚  宣丽 《光子学报》2008,37(8):1529-1532
制备了不同单体浓度的聚合物稳定铁电液晶器件,测试了震动实验和热稳定实验前后样品的排列织构、电光特性和对比度.用原子力显微镜研究了各样品的聚合物形貌,表明在器件内部形成了沿摩擦方向延伸的聚合物网络,并且随着单体含量的增加聚合物网络更加致密.由于聚合物网络体锚定的引入,使得铁电液晶分子在外力和温度场下的运动受到限制,聚合物体锚定的增强使聚合物稳定铁电液晶的稳定性也逐渐提高.实验结果表明,单体含量为4%时,聚合物稳定铁电液晶的抗震性和热稳定性良好,电光曲线为无阈值“V”字型,对比度达150∶1.  相似文献   

19.
PbYb1/2Ta1/2O3 single crystals were obtained for the first time. They were grown by the flux method. The PbOPbF2B2O3 system was used as a solvent. Dielectric investigations were carried out in 1 0 0c, 1 1 0c and 1 1 1c pseudocubic directions. These studies pointed to anisotropy of dielectric properties. Frequency-independent ε′(T) and ε″(T) maxima related to the antiferroelectric–paraelectric (AFE—PE) phase transition are observed for all directions at 562 K. The frequency-dependent ε′(T) and ε″(T) maxima near 400 K related to the ferroelectric (FE)–AFE phase transition are observed only in 1 1 1c direction. The hysteresis loops were observed in this direction only. These results point that ferroelectric relaxor properties appear only in 1 1 1c direction. We propose to consider the ferroelectric phase as ferrielectric one.  相似文献   

20.
The ferroelectric phase transition at T(C2) (=370K) in RbHSeO(4) has been studied by (1)H and (87)Rb solid-state NMR. Although not large, the spin-lattice relaxation time, T(1), and the spin-spin relaxation time, T(2), of rubidium and of the alpha- and beta-type protons show distinct change near the phase transition. The intensity of the signal due to the alpha-type protons decreases with increasing temperature, and the intensity of alpha-type protons is quite weak above 330K: at a temperature which is about 40K lower than the phase transition temperature, the ordering of the alpha-type protons occurs. The alpha-type protons in the ferroelectric phase lead to a noticeable change in the proton magnetic resonance spectra. Our study of the (1)H spectra shows that the ferroelectric phase transition in RbHSeO(4) is of order-disorder type and is due to the ordering of protons in hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号