首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The trigonal (P-3 m1) modification of Cs 3 Bi 2 Br 9 and Cs 3 Sb 2 I 9 have been studied using NQR, X-ray single crystal and powder pattern methods. Moreover, the heat capacity was measured in a wide temperature interval: 4-300 K. In Cs 3 Bi 2 Br 9 a second-order phase transition was found at T C = 96 K. The low-temperature phase is monoclinic (C12/c1), with the unit cell doubled along the [001] direction. Cs 3 Sb 2 I 9 has a sequence of phase transitions at T C = 85 K, T i = 78 K and T L = 72.1 K. The monoclinic structure below 85 K is isomorphic with the low-temperature structure of Cs 3 Bi 2 Br 9 . According to calorimetric data the lock-in transition at 72.1 K is discontinuous.  相似文献   

2.
In this paper, we investigate the electric, magnetic, structural, and thermal properties of spinel CoV(2)O(4). The temperature dependence of magnetization shows that, in addition to the paramagnetic-to-ferrimagnetic transition at T(C) = 142 K, two magnetic anomalies exist at 100 K, T(1) = 59 K. Consistent with the anomalies, the thermal conductivity presents two valleys at 100 K and T(1). At the temperature T(1), the heat capacity shows one peak, which cannot be attributed to the structural transition as revealed by the x-ray diffraction patterns for CoV(2)O(4). Below the transition temperature T(1), the ac susceptibility displays the characteristics of a glass. The series of phenomena at T(1) and the orbital state on V(3+) sites are discussed.  相似文献   

3.
The upper critical field, H(c2), of Mg(B1-xCx)(2) has been measured in order to probe the maximum magnetic field range for superconductivity that can be attained by C doping. Carbon doped MgB2 filaments were prepared, and for carbon levels below 4% the transition temperatures are depressed by about 1 K/% C and H(c2)(T=0) rises by about 5 T/% C. This means that 3.8% C substitution will depress T(c) from 39.2 to 36.2 K and raise H(c2)(T=0) from 16.0 to 32.5 T. These rises in H(c2) are accompanied by a rise in resistivity at 40 K from about 0.5 to about 10 microOmega cm.  相似文献   

4.
RE Baumbach  X Lu  F Ronning  JD Thompson  ED Bauer 《J Phys Condens Matter》2012,24(32):325601, 1-325601, 7
The temperature (T)-pressure (P) phase diagrams are reported for the tetragonal layered compounds CeRu(2)Al(2)B, CeRu(2)Ga(2)B, and CeRu(2)Ga(2)C, studied by magnetization, specific heat and electrical resistivity. These systems exhibit localized 4f magnetic ordering with ferromagnetic ground states at T(C)?=?12.8?K, 16.3?K, and 17.2?K, respectively. Chemical and applied pressure both increase T(C) in a similar manner. The evolution of properties with chemical and applied pressure suggests that these phase diagrams may be connected in a Doniach-like picture where CeRu(2)Al(2)B is furthest from the possible quantum phase transition and CeRu(2)Ga(2)C is the nearest.  相似文献   

5.
The electron-capture (EC) decay rate of (7)Be in C(60) at the temperature of liquid helium (T=5 K) was measured and compared with the rate in Be metal at T=293 K. We found that the half-life of (7)Be in endohedral C(60) ((7)Be@C(60)) at a temperature close to T=5 K is 52.47+/-0.04 d, a value that is 0.34% faster than that at T=293 K. In this environment, the half-life of (7)Be is nearly 1.5% faster than that inside Be metal at room temperature (T=293 K). We then interpreted our observations in terms of calculations of the electron density at the (7)Be nucleus position inside the C(60); further, we estimate theoretically the temperature dependence (at T=0 K and 293 K) of the electron density at the Be nucleus position in the stable center inside C(60). The theoretical estimates were almost in agreement with the experimental observations.  相似文献   

6.
Layered borocarbides RB2C (R=Dy, Ho, and Er) have been studied by powder neutron diffraction at 2-30 K. ErB2C has two-sublattice antiferromagnetic order below T(N)=16.3 K, but DyB2C and HoB2C show a coexistence of a conventional canted k=(000) ferromagnetic structure and unconventional magnetic correlations. The k=(000) phase orders at T(c)=8.5 K (DyB2C) and 7.1 K (HoB2C), but low-Q diffraction peaks from the unconventional correlations appear above T(c) with different critical temperatures for different peaks: at 8, 10.5, and 15.7 K for HoB2C. This scattering is fitted as diffraction from a Warren-type random magnetic layer lattice and may result from quadrupolar interactions between R3+ spins.  相似文献   

7.
The magnetization, M(H< or =30 T,0.7< or =T< or =300 K), of (C5H12N)2CuBr4 has been used to identify this system as an S = 1/2 Heisenberg two-leg ladder in the strong-coupling limit, J( perpendicular) = 13.3 K and J( parallel) = 3.8 K, with H(c1) = 6.6 T and H(c2) = 14.6 T. An inflection point in M(H,T = 0.7 K) at half saturation, M(s)/2, is described by an effective XXZ chain. The data exhibit universal scaling behavior in the vicinity of H(c1) and H(c2), indicating that the system is near a quantum critical point.  相似文献   

8.
Anupam  C Geibel  Z Hossain 《J Phys Condens Matter》2012,24(32):326002, 1-326002, 7
The results of the magnetic susceptibility, isothermal magnetization, heat capacity, electrical resistivity and magnetoresistance measurements on polycrystalline Eu(3)Ni(4)Ga(4) are presented. Eu(3)Ni(4)Ga(4) forms in Na(3)Pt(4)Ge(4)-type cubic crystal structure (space group [Formula: see text]). The temperature dependence of the magnetic susceptibility of Eu(3)Ni(4)Ga(4) confirms the divalent state (Eu(2+)) of Eu ions with an effective magnetic moment μ(eff)?=?7.98?μ(B). At low fields, e.g.?at 0.01?T, a magnetic phase transition to an antiferromagnetically ordered state occurs at T(N)?=?10.9?K, which is further confirmed by the temperature dependence of the heat capacity and electrical resistivity. The field dependence of isothermal magnetization at 2?K reveals the presence of two field induced metamagnetic transitions at H(c1) and H(c2)?=?0.55 and 1.2?T, respectively and a polarized phase above H(PO)?=?1.7?T. The reduced jump in the heat capacity at the transition temperature, ΔC|(T(N))?=?13.48?J/mol-Eu?K would indicate an amplitude modulated (AM) antiferromagnetic structure. An interesting feature is that a large negative magnetoresistance, MR?=?[ρ(H)?-?ρ(0)]/ρ(0), is observed in the vicinity of magnetic transition even up to 2T(N). Similar large magnetoresistance has been observed in the paramagnetic state in some Gd and Eu based alloys and has been attributed to the magneto-polaronic effect.  相似文献   

9.

We investigate the low temperature properties of the recently discovered clathrates Ba 6 Ge 25 and Na 2 Ba 4 Ge 25 by tuning both materials with hydrostatic pressure. At ambient pressure, Ba 6 Ge 25 undergoes a two-step structural phase transition between 230 K and 180 K from metallic behavior to a high-resistivity state. A superconducting transition occurs at T_{C}\approx 0.24\,\hbox{K} out of the resulting bad metal ( \rho_{0}\approx 1.5\,\hbox{m}\Omega\;\hbox{cm} ). With increasing pressure, the structural phase transition is shifted to lower temperature but T C increases drastically. T C reaches a maximum value of 3.85 K at the critical pressure p_{C}\approx 2.8\,\hbox{GPa} , where the structural distortion is completely suppressed and the system exhibits metallic behavior. On replacing 1/3 of the Ba atoms with Na (Na 2 Ba 4 Ge 25 ), no structural transformation is observed below room temperature, and the superconducting transition temperature is higher (T_{C}(p = 0) \approx 1.05\,\hbox{K}) than in the undoped case at ambient pressure but decreases slightly with increasing pressure.  相似文献   

10.
The long-range magnetic ordering of PrMn(2)O(5) has been studied on polycrystalline samples from neutron diffraction and specific heat measurements. The onset of antiferromagnetic ordering is observed at T(N) ≈ 25 K. In the temperature interval 18 K < T < 25 K the magnetic structure is defined by the propagation vector k(1) = (1/2,0,0). Below 18 K, some additional magnetic satellites appear in the NPD patterns, which are indexed with k(2) = (0,0,1/2). Therefore, below 18 K the magnetic structure consists of two independent magnetic domains, defined by the propagation vectors k(1) and k(2). The magnetic structure of the k(1)-domain is given by the basis vectors (C(x),0,0) and (C(x)',0,0) for Mn(4h) and Mn(4f), respectively. In the k(2)-domain, the magnetic structure is defined by the basis vectors (0,0,G(z)) and (F(x)',G(y)',0) for Mn(4h) and Mn(4f), respectively. At T = 1.5 K, for the magnetic phase associated with k(1), the magnetic moments of the Mn atoms at the 4h and 4f sites are 1.82(7) and 1.81(6) μ(B), respectively; for the magnetic phase associated with k(2), the magnetic moments for the Mn(4h) and Mn(4f) atoms are 0.59(5) and 2.62(5) μ(B), respectively.  相似文献   

11.
The magnetic and transport properties of PrIr(2)B(2) and PrIr(2)B(2)C have been investigated by dc and ac magnetic susceptibility, specific heat, electrical resistivity and magnetoresistance measurements. PrIr(2)B(2) forms in CaRh(2)B(2)-type orthorhombic crystal structure (space group Fddd). At low fields the dc magnetic susceptibility of PrIr(2)B(2) exhibits a sharp anomaly near 46 K which is followed by an abrupt increase below 10 K with a peak at 6 K, and split-up in ZFC and FC data below 46 K. In contrast, the specific heat exhibits only a broad Schottky type hump near 9 K which indicates that there is no long range magnetic order in this compound. The thermo-remanent magnetization is found to decay very slowly with a mean relaxation time τ = 3917 s. An ac magnetic susceptibility measurement also observes two sharp anomalies; the peak positions strongly depend on the frequency and shift towards high temperature with an increase in frequency, obeying the Vogel-Fulcher law as expected for a canonical spin-glass system. The two spin-glass transitions occur at freezing temperatures T(f1) = 36 K and T(f2) = 3.5 K with shifts in the freezing temperatures per decade of frequency δT(f1) = 0.044 and δT(f2) = 0.09. An analysis of the frequency dependence of the transition temperature with critical slowing down, τ(max)/τ(0) = [(T(f)-T(SG))/T(SG)](-zν), gives τ(0) = 10(-7) s and exponent zν = 8, and the Vogel-Fulcher law gives an activation energy of 84 K for T(f1) and 27.5 K for T(f2). While zν = 8 is typical for spin-glass system, the characteristic relaxation time τ(0) = 10(-7) s is very large and comparable to that of superspin-glass systems. An addition of C in PrIr(2)B(2) leads to PrIr(2)B(2)C which forms in LuNi(2)B(2)C-type tetragonal structure (space group I4/mmm) and remains paramagnetic down to 2 K. The specific heat data show a broad Schottky type anomaly, which could be fairly reproduced with CEF analysis which suggests that the ground state is a CEF-split singlet and the first excited state singlet is situated 15 K above the ground state. The Sommerfeld coefficient γ~300 mJ mol(-1) K(-2) of PrIr(2)B(2)C is very high and reflects a heavy fermion behaviour in this compound. We believe that the heavy fermion state in PrIr(2)B(2)C has its origin in low lying crystal field excitations as has been observed in PrRh(2)B(2)C.  相似文献   

12.
The ferroelectric phase transition at T(C2) (=370K) in RbHSeO(4) has been studied by (1)H and (87)Rb solid-state NMR. Although not large, the spin-lattice relaxation time, T(1), and the spin-spin relaxation time, T(2), of rubidium and of the alpha- and beta-type protons show distinct change near the phase transition. The intensity of the signal due to the alpha-type protons decreases with increasing temperature, and the intensity of alpha-type protons is quite weak above 330K: at a temperature which is about 40K lower than the phase transition temperature, the ordering of the alpha-type protons occurs. The alpha-type protons in the ferroelectric phase lead to a noticeable change in the proton magnetic resonance spectra. Our study of the (1)H spectra shows that the ferroelectric phase transition in RbHSeO(4) is of order-disorder type and is due to the ordering of protons in hydrogen bonds.  相似文献   

13.

UPtAl exhibits a ferromagnetic ordering of U magnetic moments at temperatures below T C =42.5 K. The magnetic-ordering transition is accompanied by an anomaly in the temperature dependence of electrical resistivity. This allows us to determine the value of Curie temperature from 𝜌 vs. T data that can be measured at very high pressures, at which reliable magnetization measurements are difficult. We report on resistivity measurements performed on an UPtAl single crystal under hydrostatic pressures p h 8 GPa. It was observed that the initial increase of T C with p becomes gradually reduced for p >2 GPa until the maximum T C value of , 48 K is reached between 4 and 6 GPa that is followed by a progressively developing downturn of the T C ( p ) curve. The latter result is attributed to the approaching collapse of the U 5 f -moment ferromagnetism. Low-temperature resistivity data point to a rapidly reduced magnetic anisotropy at highest pressures.  相似文献   

14.
We report the doping effect on the various properties of spinels Co(1-x)Zn(x)V(2)O(4) (0 ≤ x ≤ 0.2). For the parent compounds, the rise in magnetization, the valley in thermal conductance, the transition from the ferromagnetic arrangement to non-collinear alignment indicated by the specific heat for the V sublattice, especially the frequency dependence of AC susceptibility around T(1) = 59 K, verify the occurrence of the transition at T(1) besides the ferrimagnetic transition at T(C). The ferrimagnetic transition at T(C) induces the spin-cluster glass behavior and the transition at T(1) yields the new spin-cluster glass (NSCG) behavior. As the Zn(2+)-doped content increases, the above phenomena are gradually weakening to vanishing, but the glassy behavior at T(C) still exists for all samples. Through the fourth-order perturbation theory, we discuss the reasons for the gradual vanishing of the transition at T(1).  相似文献   

15.

Using the new technique of nuclear forward scattering (NFS) of synchrotron radiation, we studied the magnetic hyperfine fields B hf and ordering temperatures T M of the Laves phases LuFe 2 (cubic C15) and ScFe 2 (hexagonal C14) at pressures up to 90 GPa and temperatures up to 700 K. For LuFe 2 we find for T M first an increase from 562 K at 0 GPa to 603 K at 10 GPa and then a decrease to 295 K around 75 GPa. The hyperfine fields B hf show at 295 K a continuous decrease with pressure, indicating a reduction of the Fe band moment. A similar behaviour of both T M and B hf was observed in ScFe 2.  相似文献   

16.
We determine the initial temperature dependence of the exchange splitting Delta(T) in the weak itinerant ferromagnet ZrZn2 (T{C}=28 K) using the de Haas-van Alphen effect. There is a large decrease in Delta with temperature in the range 0.5< or =T< or =4 K. A comparison of Delta(T) with the magnetization M(T) shows that the dominant process responsible for the reduction of M is not the thermal excitation of spin waves, but a repopulation of the spin- upward arrow and spin- downward arrow Fermi surfaces. This contrasts with the behavior in Fe where there is no observable change in Delta and the thermal excitation of spin waves is the only observable spin-flipping process at low temperatures.  相似文献   

17.
The heavy-fermion system CeCu6-xAgx is studied at its antiferromagnetic quantum critical point, xc=0.2, by low-temperature (T> or =50 mK) specific heat, C(T), and volume thermal expansion, beta(T), measurements. Whereas C/T proportional to log((T0/T) would be compatible with the predictions of the itinerant spin-density-wave (SDW) theory for two-dimensional critical spin fluctuations, beta(T)/T and the Grüneisen ratio, Gamma(T) proportional to beta/C, diverge much weaker than expected, in strong contrast to this model. Both C and beta, plotted as a function of the reduced temperature t=T/T0 with T0=4.6 K, are similar to what was observed for YbRh2(Si(0.95)Ge(0.05))2 (T0=23.3 K), indicating a striking discrepancy to the SDW prediction in both systems.  相似文献   

18.
以B4C和Mg为原料合成的MgB2-B4C复相超导体具有高的临界电流密度(Jc)和高的超导转变温度(Tc),是一种有潜力的实用MgB2超导材料,其成相机理对复相MgB2超导体的相含量调控和磁通钉扎研究具有重要意义。结合经典烧结理论,研究了B4C-Mg真空固相烧结制备MgB2-B4C复相超导体的超导相形成和晶粒生长过程,给出了B4C-Mg的金斯特林格扩散模型和MgB2晶粒生长过程。通过选择B4C原料粒径,MgB2-B4C复相超导体超导相体积相含量在18%-88%范围可控。相含量88%的MgB2-B4C复相超导体临界转变温度达33.5K,转变宽度1.5K。10 K环境6T外场下电流密度可以达到1×104A/cm2,表明MgB2-B4C复相超导体具有良好的磁通钉扎行为。  相似文献   

19.
We report the observation of multiferroicity in a clinopyroxene NaFeGe(2)O(6) polycrystal from the investigation of its electrical and magnetic properties. Following the previously known first magnetic transition at T(N1) = 13 K, a second magnetic transition appears at T(N2) = 11.8 K in the temperature dependence of the magnetization. A ferroelectric polarization starts to develop clearly at T(N2) rather than T(N1) and its magnitude increases up to ~13 μC m(-2) at 5 K, supporting the idea that the ferroelectric state in NaFeGe(2)O(6) stems from a helical spin order stabilized below T(N2). When a magnetic field of 90 kOe is applied, the electric polarization decreases to 9 μC m(-2) and T(N2) slightly increases by 0.5 K. At intermediate magnetic fields, around 28 and 78 kOe, anomalies in the magnetoelectric current, magnetoelectric susceptibility, and field derivative of magnetization curves are found, indicating field-induced spin-state transitions. Based on these electrical and magnetic properties, we provide a detailed low temperature phase diagram up to 90 kOe, and discuss the nature of each phase of NaFeGe(2)O(6).  相似文献   

20.
The hyperfine magnetic fields for181Ta in the cubic (C 15) Laves phases LuFe2 and GdFe2 have been measured by the TDPAC method. At 300 K, Bhf=−20.5(4) T for LuFe2 and +19.0(5) T and +10.2(4) T for the samples of GdFe2, prepared at normal and high (7.7 GPa) pressure, have been obtained. Temperature dependence of these fields in the range 77–900 K has been also measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号