首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Journal of Crystal Growth》2003,247(3-4):371-380
In this paper we report on the structural properties of as-grown CdS nanoparticles embedded in Al2O3 films produced by a magnetron RF-sputtering technique. Grazing incidence X-ray diffraction together with high-resolution transmission electron microscopy (HRTEM) and electron diffraction were used to study the crystallinity and morphology of the CdS nanocrystals. Depending on the deposition parameters, elongated or spherical nanocrystals were grown. HRTEM shows evidence of the growth of CdS nanocrystals at room temperature with sizes in the range of 3–8 nm, and indicates that the nanocrystals formed in the cubic phase during the early stages of the deposition process. Stress-free films were formed under selected deposition conditions.  相似文献   

2.
The aim of this study depends on understanding the effect of target‐to‐substrate distance (DTS) on ZnO thin films deposited by r.f. magnetron sputtering on to glass substrates at room temperature conditions. The DTS was changed from 35 mm to 65 mm with steps of 5 mm at 165 W and 0.2 Pa. The deposition rate of the films were ranged from 76 Ǻ / min to 146 Ǻ / min, while 10‐3 Ω.cm was obtained as the resistivity value with the help of four point probe technique. The structural investigations were carried out by using both the x‐ray diffraction (XRD) and high resolution transmission electron microscopy. According to XRD observations, the films were (002) oriented. Surface behaviour of the ZnO films was examined with atomic force microscopy and scanning electron microscopy. The root mean square (RMS) values were varied from 4.6 nm to 22.8 nm. Also, optical properties were obtained from UV–visible spectrophotometer and the transmittances as around 80 %. At 45 mm DTS value, the minimum resistivity measured as 9 × 10− 4 Ω.cm with 76 Ǻ / min deposition rate. The RMS was obtained as 4.9 nm and transmission was measured as 85.30 %, while band gap was 3.45 eV.  相似文献   

3.
The complexing of polycation chitosan and polyanion sulphoethyl cellulose during the formation of polyelectrolyte simplex membranes using the layer-by-layer deposition of a solution of one polyion on a gel-like film of another one has been studied. The structural characteristics of the multilayer composites and their components have been analyzed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray microanalysis. A technique is proposed for studying the structure of surface layers of thin polymer films (15–20 μm) using a portable DIFREI-401 diffractometer. It is shown that the sequence of layer deposition during the formation of membrane films does not affect their structural characteristics. The interaction between positively charged chitosan groups (-NH 3 + ) and negatively charged sulfoethyl cellulose groups (-SO 3 ? ) during the growth of polyelectrolyte complexes results in a packing of chitosan chains in the multilayer film.  相似文献   

4.
Thin films of antimony trisulfide (Sb2S3) were prepared by thermal evaporation under vacuum (p=5×10–5 torr) on glass substrates maintained at various temperatures between 293 K and 523 K. Their microstructural properties have obtained by transmission electron microscopy (TEM). The electron diffraction analysis showed the occurrence of amorphous to polycrystalline transition in the films deposited at higher temperature of substrates (523 K). The polycrystalline thin films were found to have an orthorhombic structure. The interplanar distances and unit‐cell parameters were determined by high‐resolution transmission electron microscopy (HRTEM) and compared with the standard values for Sb2S3. The surface morphology of Sb2S3 thin films was investigated by scanning electron microscopy (SEM). The optical transmission spectra at normal incidence of Sb2S3 thin films have been measured in the spectral range of 400–1400 nm. The analysis of the absorption spectra revealed indirect energy gaps, characterizing of amorphous films, while the polycrystalline films exhibited direct energy gap. From the photon energy dependence of absorption coefficient, the optical band gap energy, Eg, were calculated for each thin films. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
A complex investigation of epitaxial In0.5Ga0.5As films grown on GaAs substrates with crystallographic orientations of (100) and (111)A in the standard high- and low-temperature modes has been performed. The parameters of the GaAs substrate and In0.5Ga0.5As film were matched using the technology of step-graded metamorphic buffer. The electrical and structural characteristics of the grown samples have been studied by the van der Pauw method, atomic force microscopy, scanning electron microscopy, and transmission/ scanning electron microscopy. The surface morphology is found to correlate with the sample growth temperature and doping with silicon. It is revealed that doping of low-temperature In0.5Ga0.5As layers with silicon significantly reduces both the surface roughness and highly improves the structural quality. Pores 50–100 nm in size are found in the low-temperature samples.  相似文献   

6.
J.B. Chu  S.M. Huang  H.B. Zhu  X.B. Xu  Z. Sun  Y.W. Chen  F.Q. Huang 《Journal of Non》2008,354(52-54):5480-5484
Indium tin oxide (ITO) films were grown without external heating in an ambient of pure argon by RF-magnetron sputtering method. The influence of argon ambient pressure on the electro-optical properties of as-deposited ITO films was investigated. The morphology, structural and optical properties of ITO films were examined and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and UV–VIS transmission spectroscopy. The deposited ITO films with a thickness of 300 nm show a high transparency between 80% and 90% in the visible spectrum and 14–120 Ω/□ sheet resistance under different conditions. The ITO films deposited in the optimum argon ambient pressure were used as transparent electrical contacts for thin film Cu(In,Ga)Se2 (CIGS) solar cells. CIGS solar cells with efficiencies of the order of 7.0% were produced without antireflective films. The results have demonstrated that the developed ITO deposition technology has potential applications in thin film solar cells.  相似文献   

7.
《Journal of Non》2007,353(13-15):1431-1436
One of the recent applications of thin chalcogenide films is in rewritable optical data recording. This technology is based on reversible phase transition between crystalline and amorphous state. Currently, the primary materials for rewritable optical are Ge–Sb–Te and Ag–In–Sb–Te alloys, but materials research still continues due to the need for increased storage capacity and data recording rates. (Ag)–Sb–S thin films were prepared by thermal evaporation of Sb33S67 bulk and optically induced diffusion and dissolution of thermally evaporated Ag films. Prepared samples were characterized by electron microprobe (SEM-EDX), differential scanning calorimetry (DSC) and by UV–Vis–NIR and Raman spectroscopy. The phase-change recording processes in (Ag)–Sb–S films were carried out by photocrystallization experiments done by Ar+ ion laser. The laser exposed dots were studied by scanning electron microscopy (SEM) and transmission optical microscopy. Micro X-ray diffraction (μ-XRD) was used for the exposed dots crystallinity study. Photocrystallization kinetic curves (showing the dependence of optical transmission on laser exposure time) were also established. Crystallization mechanism of Agx(Sb0.33S0.67)100−x samples was discussed.  相似文献   

8.
Amorphous films of GeSe0.7 and GeSe2.4 have been examined by energy-filtered scanning electron diffraction and by electron microscopy. Radial distribution analysis of the GeSe0.7 intensity curves indicates that the local atomic order of these films differs considerably from the distorted rocksalt structure of bulk crystalline GeSe. Radial distribution studies also indicate a change in the structure of GeSe0.7 and GeSe2.4 films supported on copper mesh as they are heated with an electron beam. Gross structural features are not observable in the electron micrographs of the amorphous films. This does not eliminate, however, the possibility of the presence of glassy phase separation on a fine scale in the heat-treated films.  相似文献   

9.
《Journal of Non》2007,353(18-21):2066-2068
GeSe2 and Ge28Sb12Se60 chalcogenide glass thin films have been deposited on single crystal silicon substrates by vacuum thermal evaporation. The surface morphology of these films has been investigated by field emission-scanning electron microscopy and atomic force microscopy, revealing heterogeneities in their microstructure consisting of granular regions ∼15–50 nm in size, which were coarser in the case of the GeSe2 films. Typical RMS film surface roughness values were ∼0.9–1.3 nm.  相似文献   

10.
Lead zirconate titanate (PZT) films doped with lanthanum, Pb(1–х)Laх(Zr0.48Ti0.52) (х = 0, 0.02, 0.05, 0.08, or 0.01), have been investigated by electron microscopy and X-ray diffraction. Films were formed on Si–SiO2–TiO2–Pt substrates by chemical vapor deposition from a solution and annealed at temperatures T = 650 and 750°C. The main structural features of the films, differing them from undoped PZT films fabricated by the same method, have been established. It is found that doping with lanthanum delays the pyrochlore–perovskite transformation in the film bulk, i.e., in the regions distant from the film–substrate interface. The fraction of metastable pyrochlore phase increases with an increase in the La molar content in the films. The main reason for the delay is the deficit of lead in the intergranular perovskite space, especially in the upper part of the film. Annealing at T = 750°C reduces the content of pyrochlore phase but does not completely remove it, which was never observed for undoped PZT films. Doping with lanthanum leads to a change in the lattice period c and a tetragonal distortion of the perovskite lattice (c/a ratio). Hence, the [100] texture of the films obtained, in contrast to the typical [111] texture of PZT films, is due to the increase in the lattice mismatch between the film and platinum layer when lead atoms are replaced with lanthanum. Lattice distortions of “transrotational” character, whose value exceeds 160 deg/μm, are found to arise in growing crystals.  相似文献   

11.
To investigate the effects of tellurium (Te) deposition rate on the properties of Cu–In–Te based thin films (Cu/In=0.30–0.31), the films were grown on both bare and Mo-coated soda-lime glass substrates at 200 °C by co-evaporation using a molecular beam epitaxy system. The microstructural properties were examined by means of scanning electron microscopy and X-ray diffraction. The crystalline quality of the films was improved with increase in the deposition rate of Te, and exhibited a single CuIn3Te5 phase with a highly preferred (1 1 2) orientation. Te-deficient film (Te/(Cu+In)=1.07) grown with a low Te deposition rate showed a narrow bandgap of 0.99 eV at room temperature. The solar cell performance was affected by the deposition rate of Te. The best solar cell fabricated using CuIn3Te5 thin films grown with the highest deposition rate of Te (2.6 nm/s) yielded a total area (0.50 cm2) efficiency of 4.4% (Voc=309 mV, Jsc=28.0 mA/cm2, and FF=0.509) without light soaking.  相似文献   

12.
Anomalous SiO2 films have been prepared by sputtering Si in a mixture of Ar-10% O2 at 77 K. The same sputtering conditions at room temperature yield normal SiO2 which means that the anomaly is produced by the low temperature deposition. The anomaly reveals itself in several physical properties. The density of the anomalous SiO2 is 1.72 as compared with 2.20 for bulk and the dielectric constant is about 50% larger than bulk and with a much stronger temperature dependence. The infrared (ir) spectrum of the anomalous SiO2 is only slightly different from bulk SiO2 but esr experiments reveal about 3 × 1018 spins cm which do not exist in bulk SiO2. These anomalous films are extremely stable: upon heating only a small amount of oxygen (1 part in 105) evolves at 440°C but the density and IR spectrum remain unchanged up to 1300°C. Annealing at 1500°C completely removes the ESR signal and returns the ir spectrum and the density to that of cristobalite. An electron diffraction and transmission electron microscopy study reveals that the anomalous SiO2 films consist of essentially bulk like SiO2 clusters about 250 Å in diameter separated by a low density network. The low density network undoubtedly contains unbound O atoms and the SiSi bonds which give rise to the esr signal. The structural model can account for all the anomalous properties.  相似文献   

13.
Sb2S3 thin films are obtained by evaporating of Sb2S3 powder onto glass substrates maintained at room temperature under pressure of 2×10‐5 torr. The composition of the thin films was determined by energy dispersive analysis of X‐ray (EDAX). The effect of thermal annealing in vacuum on the structural properties was studied using X‐ray diffraction (XRD) technique and scanning electron microscopy (SEM). The as‐deposition films were amorphous, while the annealed films have an orthorhombic polycrystalline structure. The optical constants of as‐deposited and annealed Sb2S3 thin films were obtained from the analysis of the experimental recorded transmission spectral data over the wavelength range 400‐1400 nm. The transmittance analysis allowed the determination of refractive index as function of wavelength. It was found that the refractive dispersion data obeyed the single oscillator model, from which the dispersion parameters (oscillator energy, E0, dispersion energy, Ed) were determined. The static refractive index n(0), static dielectric constant, ε, and optical band gap energy, Eg, were also calculated using the values of dispersion parameters. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
《Journal of Non》2006,352(9-20):896-900
In this study, employing a high-density, low-temperature SiH4–H2 mixture microwave plasma, we investigate the influence of source gas supply configuration on deposition rate and structural properties of microcrystalline silicon (μc-Si) films, and demonstrate the plasma parameters for fast deposition of highly crystallized μc-Si films with low defect density. A fast deposition rate of 65 Å/s has been achieved for a SiH4 concentration of 67% diluted in H2 with a high Raman crystallinity of Xc > 65% and a low defect density of (1–2) × 1016 cm−3 by adjusting source gas supply configuration and plasma conditions. A sufficient supply of deposition precursors, such as SiH3, as well as atomic hydrogen H on film growing surface is effective for the high-rate synthesis of highly crystallized μc-Si films, for the reduction in defect density, and for the improvement in film homogeneity and compactability. A preliminary result of p–i–n structure μc-Si thin-film solar cells using the resulting μc-Si films as an intrinsic absorption layer is presented.  相似文献   

15.
This paper presents a study of the transition between amorphous and crystalline phases of SiC films deposited on Si(1 0 0) substrate using H3SiCH3 as a single precursor by a conventional low-pressure chemical vapor deposition method in a hot-wall reactor. The microstructure of SiC, characterized by X-ray diffraction and high-resolution transmission electron microscopy, is found to vary with substrate temperature and H3SiCH3 pressure. The grain size decreases with increasing MS pressure at a given temperature and also decreases with reducing temperature at a given MS pressure. The deposition rates are exponentially dependent on the substrate temperature with the activation energy of around 2.6 eV. The hydrogen compositional concentration in the deposited SiC films, determined by secondary ion mass spectrometry depth profiling, is only 2.9% in the nanocrystalline SiC but more than 10% in the amorphous SiC, decreasing greatly with increasing deposition temperature. No hydride bonds are detected by Fourier transform infrared spectroscopy measurements. The chemical order of the deposited SiC films improves with increasing deposition temperature.  相似文献   

16.
This work describes the preparation of HfO2 thin films by the sol–gel method, starting with different precursors such as hafnium ethoxide, hafnium 2,4-pentadionate and hafnium chloride. From the solution prepared as mentioned above, thin films on silicon wafer substrates have been realized by ‘dip-coating’ with a pulling out speed of 5 cm min?1. The films densification was achieved by thermal treatment for 10 min at 100 °C and 30 min at 450 °C or 600 °C, with a heating rate of 1 °C min?1. The structural and optical properties of the films are determined employing spectroellipsometric (SE) measurements in the visible range (0.4–0.7 μm), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The main objective of this paper was to establish a correlation between the method of preparation (precursor, annealing temperature) and the properties of the obtained films. The samples prepared from pentadionate and ethoxide precursors are homogenous and uniform in thickness. The samples prepared starting from chloride precursor are thicker and proved to be less uniform in thickness. Higher non-uniformity develops in multi-deposition films or in crystallized films. A nano-porosity is present in the quasi-amorphous films as well in the crystallized one. For the samples deposited on silicon wafer, the thermal treatment induced the formation of a SiO2 layer at the coating–substrate interface.  相似文献   

17.
TiO2 thin films, were deposited on Si(100) and Si(111) substrates by metalorganic chemical vapor deposition at 500 °C, and have been annealed for 2 min, 30 min and 10 hours at the temperature from 600 °C to 900 °C, in oxygen and air flow, respectively. XRD and atomic force microscopy characterized the structural properties and surface morphologies of the films. As‐deposited films show anatase polycrystalline structure with a surface morphology of regular rectangled grains with distinct boundaries. Rutile phase formed for films annealed above 600 °C, and pure rutile polycrystalline films with (110) orientation can be obtained after annealing under adequate conditions. Rutile annealed films exhibit a surface morphology of equiaxed grains without distinct boundaries. The effects of substrate orientation, annealing time and atmosphere on the structure and surface morphology of films have also been studied. Capacitance‐Voltage measurements have been performed for films deposited on Si(100) before and after annealing. The dielectric properties of TiO2 films were greatly improved by thermal annealing above 600 °C in oxygen.  相似文献   

18.
Cu2ZnSnS4 (CZTS) films are fabricated using the three‐step process, including deposition, preheating and sulfurization of Cu–Zn–Sn (CZT) precursors. The effect of preheating temperature on structures, morphologies, and optical properties of CZTS films is investigated detailedly by X‐ray diffraction, Raman spectra, scanning electron microscopy, and UV spectrophotometer. It is found that the proper preheating temperature can improve the crystal quality of CZTS films. The prepared CZTS film by sulfurizing the preheated precursor at 300 °C presents high crystallinity, uniform surface morphology, and suitable optical properties. Compared with two‐step process, three‐step method can not only improve crystal quality of CZTS films but also decline sulfurization temperature. We also discuss the mechanism of improving the properties of CZTS absorber layer by the preheating route in detail. In addition, the experimental results also indicate that solar cell prepared by three‐step method displays higher conversion efficiency.  相似文献   

19.
This work investigates the growth of polycrystalline α-HgI2 thick films from physical vapor deposition. By varying the growth conditions, the as-deposited thick films are characterized by scanning electron microscopy, X-ray diffraction, current–voltage and photoconductivity measurements. The growth mechanism and its effects to the properties of these polycrystalline α-HgI2 thick films are then discussed. Finally, the best deposition conditions for polycrystalline α-HgI2 thick films compactly formed by separated columnar monocrystallines with uniform orientation along c-direction and with good crystallinity are reported.  相似文献   

20.
Antimony trioxide (Sb2O3) thin films have been deposited onto glass substrates using thermal evaporation technique at room temperature. The structural feature and surface morphology were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Sandwich‐type structures were deposited with films thickness d = 0.55 μm using evaporated electrodes of silver. Current‐voltage (J‐U) characteristics have been measured at various fixed temperatures in the range 293‐473 K. In all cases, at low electric field (E <104 V/cm), ohmic behavior is observed. However, at high electric field (E >104 V/cm), non‐ohmic behavior is observed. An analysis of the experimental data indicates that in the range of high‐applied electric field, the dominant conduction mechanism is space charge limited currents (SCLC). Using the relevant SCLC theory, the carrier concentration, total trap concentration and the ratio of free charge to trapped charge have been calculated and correlated with changes in the structures of antimony trioxide thin films. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号