首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new mathematical framework for de Sitter invariant gravity is described. Gauge symmetry follows the pattern of symmetry breaking; O(4, 2) → O(4, 1) → O(3, 1). Intimate relationships between spacetime and matter are exhibited via the interaction of gravity with scalar and spinor fields. The relevance of these results to GUT cosmology is discussed. It is shown that the cosmological constant is zero after the phase transition.  相似文献   

2.
By matching the predictions of the Dp–Dq soft-wall model in type II superstring theory with the spectra of vector and axial-vector mesons, we show the dependence of the Regge trajectories parameters on the metric parameters of the model. From the experimental results of Regge parameters for vector mesons, it is found that the D3 background brane with both q=5 and q=7 probe brane and D4 background brane with q=4 probe brane are close to the realistic holographic QCD. We also discuss how to realize chiral symmetry breaking in the vacuum and asymptotic chiral symmetry restoration in high excitation states. We find that the constant component of the 5-dimension mass square of axial-vector mesons plays an efficient role to realize the chiral symmetry breaking, and a small negative z 4 correction in the 5-dimension mass square is helpful to realize the chiral symmetry restoration in high excitation states.  相似文献   

3.
We study black hole solutions of Einstein gravity coupled to a specific global symmetry breaking Goldstone model described by an O(3) isovector scalar field in four spacetime dimensions. Our configurations are static and spherically symmetric, approaching at infinity a Minkowski spacetime background. A set of globally regular, particle-like solutions are found in the limit of vanishing event horizon radius. These configurations can be viewed as ‘regularised’ global monopoles, since their mass is finite and the spacetime geometry has no deficit angle. As an unusual feature, we notice the existence of extremal black holes in this model defined in terms of gravity and scalar fields only.  相似文献   

4.
Since there is an incompatibility of simultaneously nonlinear breaking the superconformal symmetry and the dilatation symmetry with the dilaton taken as the compensator field, in the present paper is shown an alternative mechanism of spontaneous breaking the N=2 superconformal symmetry to the N=0 case. By using the approach of nonlinear transformations one finds that it leads to a space-filling brane theory with Weyl scale W(1,3) symmetry. The dynamics of the resulting Weyl scale invariant brane, along with that of other Nambu–Goldstone fields, is derived in terms of the building blocks of the vierbein and the covariant derivative from the Maurer–Cartan one-forms. A general coupling of the matter fields localized on the brane world volume to these NG fields is also constructed.  相似文献   

5.
In this work, we study the localization of the vector gauge field in two five-dimensional braneworlds generated by scalar fields coupled to gravity. The sine–Gordon like potentials are employed to produce different thick brane setups. A zero mode localized is obtained, and we show the existence of reverberations with the wave solutions indicating a quasi-localized massive mode. More interesting results are achieved when we propose a double sine–Gordon potential to the scalar field. The resulting thick brane shows a more detailed topology with the presence of an internal structure composed by two kinks. The massive spectrum of the gauge field is revalued on this scenario revealing the existence of various resonant modes. Furthermore, we compute the corrections to Coulomb law coming from these massive KK vector modes in these thick scenarios, which is concluded that the dilaton parameter regulates these corrections.  相似文献   

6.
《Physics letters. [Part B]》2001,504(4):296-300
The mass of the axion and its decay rate are known to depend only on the scale of Peccei–Quinn symmetry breaking, which is constrained by astrophysics and cosmology to be between 109 and 1012 GeV. We propose a new mechanism such that this effective scale is preserved and yet the fundamental breaking scale of U(1)PQ is very small (a kind of inverse seesaw) in the context of large extra dimensions with an anomalous U(1) gauge symmetry in our brane. The production and decay of the associated ZA gauge boson, which ends up as two gluons and two axions, is a distinct collider signature of this scenario.  相似文献   

7.
《Nuclear Physics B》2001,609(3):499-517
We analyze the propagation of a scalar field in multidimensional theories which include kinetic corrections in the brane, as a prototype for gravitational interactions in a four-dimensional brane located in a (nearly) flat extra-dimensional bulk. We regularize the theory by introducing an infrared cutoff given by the size of the extra dimensions, R, and a physical ultraviolet cutoff of the order of the fundamental Planck scale in the higher-dimensional theory, M. We show that, having implemented cutoffs, the radius of the extra dimensions cannot be arbitrarily large for M≳1 TeV. Moreover, for finite radii, the gravitational effects localized on the brane can substantially alter the phenomenology of collider and/or table-top gravitational experiments. This phenomenology is dictated by the presence of a massless graviton, with standard couplings to the matter fields, and a massive graviton which couples to matter in a much stronger way. While graviton KK modes lighter than the massive graviton couple to matter in a standard way, the couplings to matter of the heavier KK modes are strongly suppressed.  相似文献   

8.
The mechanism behind electroweak symmetry breaking (EWSB) and the nature of dark matter (DM) are currently among the most important issues in high energy physics. Since a natural dark matter candidate is a weakly interacting massive particle or WIMP, with mass around the electroweak scale, it is clearly of interest to investigate the possibility that DM and EWSB are closely related. In the context of a very simple extension of the Standard Model, the inert doublet model, we show that dark matter could play a crucial role in the breaking of the electroweak symmetry. In this model, dark matter is the lightest component of an inert scalar doublet. The coupling of the latter with the Standard Model Higgs doublet breaks the electroweak symmetry at one-loop, à la Coleman–Weinberg. The abundance of dark matter, the breaking of the electroweak symmetry and the constraints from electroweak precision measurements can all be accommodated by imposing (an exact or approximate) custodial symmetry.  相似文献   

9.
Local gauge symmetries which are spontaneously broken in flat spacetime are shown to be restored for large spacetime curvatures. The case of symmetry breaking due to radiative quantum corrections in gauge theories with elementary scalar fields is considered explicitly. In spacetimes with a positive Ricci curvature scalar R and a cosmological event horizon, the critical curvature RC is of O(mH2) or O(mW2), depending on whether the theory is formulated with conformal or minimal scalar fields. In Ricci flat spacetimes with a conventional event horizon the symmetry is expected to be restored when the temperature of the Hawking thermal radiation is of O(mW). This phenomenon is described in detail, using functional integral methods and dimensional renormalization, for massless scalar electro-dynamics in de-Sitter spacetime. For conformal scalars, the symmetry restoring phase transition is first order, the critical curvature being RC = 0.910 mH2. For minimal scalars, an anomalous, curvature dependent mass counterterm is required. The phase transition in this case is second order, and occurs at RC = 83.57 mW2. Symmetry restoration at finite temperature in flat spacetime is considered in an appendix. The critical temperature at which a first-order phase transition occurs in the Weinberg-Salam model is found to be TC = 0.329 mW.  相似文献   

10.
For a real scalar field minimally coupled to bulk gravity, in five dimensions, we analytically solve the Gordon equation, near one of the degenerated vacua of an effective potential with a spontaneously broken Z 2-symmetry. Dealing with the back-reaction from the excited massive modes on the whole scale function, we are pointing out that the lighter excitations of the scalar in the bulk turn more and more the warp function into the one of a partition on the confined brane.   相似文献   

11.
We consider a scalar thick brane configuration arising in a 5D theory of gravity coupled to a self-interacting scalar field in a Riemannian manifold. We start from known classical solutions of the corresponding field equations and elaborate on the physics of the transverse traceless modes of linear fluctuations of the classical background, which obey a Schrödinger-like equation. We further consider two special cases in which this equation can be solved analytically for any massive mode with $m^2\ge 0$ , in contrast with numerical approaches, allowing us to study in closed form the massive spectrum of Kaluza–Klein (KK) excitations and to analytically compute the corrections to Newton’s law in the thin brane limit. In the first case we consider a novel solution with a mass gap in the spectrum of KK fluctuations with two bound states—the massless 4D graviton free of tachyonic instabilities and a massive KK excitation—as well as a tower of continuous massive KK modes which obey a Legendre equation. The mass gap is defined by the inverse of the brane thickness, allowing us to get rid of the potentially dangerous multiplicity of arbitrarily light KK modes. It is shown that due to this lucky circumstance, the solution of the mass hierarchy problem is much simpler and transparent than in the thin Randall–Sundrum (RS) two-brane configuration. In the second case we present a smooth version of the RS model with a single massless bound state, which accounts for the 4D graviton, and a sector of continuous fluctuation modes with no mass gap, which obey a confluent Heun equation in the Ince limit. (The latter seems to have physical applications for the first time within braneworld models). For this solution the mass hierarchy problem is solved with positive branes as in the Lykken–Randall (LR) model and the model is completely free of naked singularities. We also show that the scalar–tensor system is stable under scalar perturbations with no scalar modes localized on the braneworld configuration.  相似文献   

12.
The doping dependence of the Raman spectra of high quality La2−xSrxCu16,18O4 polycrystalline compounds has been investigated at low temperatures. It is shown that symmetry forbidden bands peaked at ∼150 cm−1, ∼280 cm−1, and ∼370 cm−1 are activated in the (xx/yy) polarization Raman spectra due to the local breaking of the inversion symmetry mainly at low temperatures and for doping concentrations for which the compound is superconducting. The apparent A1-character of the activated modes in the symmetry reduced phase indicates a reduction from the D2h to C2v or D2 crystal symmetries, which associates the observed modes to specific IR-active phonons with eigenvectors mainly along the c-axis. The temperature and doping dependence of this inversion symmetry breaking and the superconducting transition temperature are very similar, though the symmetry reduction occurs at significantly higher temperatures.  相似文献   

13.
In this work we study two types of five-dimensional braneworld models given by sine-Gordon potentials. In both scenarios, the thick brane is generated by a real scalar field coupled to gravity. We focus our investigation on the localization of graviton field and the behaviour of the massive spectrum. In particular, we analyse the localization of massive modes by means of a relative probability method in a Quantum Mechanics context. Initially, considering a scalar field sine-Gordon potential, we find a localized state to the graviton at zero mode. However, when we consider a double sine-Gordon potential, the brane structure is changed allowing the existence of massive resonant states. The new results show how the existence of an internal structure can aid in the emergence of massive resonant modes on the brane.  相似文献   

14.
We investigate the possibility of localizing various matter fields on a bent AdS4 (dS4) thick brane in AdS5. For spin 0 scalar field, we find a massless zero mode and an excited state which can be localized on the bent brane. For spin 1 vector field, there is only a massless zero mode on the bent brane. For spin 1/2 fermion field, it is shown that, in the case of no Yukawa coupling of scalar-fermion, there is no existence of localized massless zero mode for both left and right chiral fermions. In order to localize massless fermions, some kind of Yukawa coupling must be included. We study two types of Yukawa couplings as examples. Localization property of chiral fermions is related to the parameters of the brane model, the Yukawa coupling constant and the cosmological constant of the 4-dimensional space–time.  相似文献   

15.
Expressions for the total cross sections of elementary interaction processes between the primary fermion scalar fields and the scalar fields generated by dynamical symmetry breaking are derived within the framework of the globalSU (2) L ?U (1)-invariant four-fermion model by means of lowest-approximation loop expansions of the propagators for the indicated fields.  相似文献   

16.
《Nuclear Physics B》1997,507(3):658-690
A brane configuration is described that is relevant to understanding the dynamics of N = 1 supersymmetric Yang-Mills theory. Confinement and spontaneous breaking of a discrete chiral symmetry can be understood as consequences of the topology of the brane. Because of the symmetry breaking, there can be domain walls separating different vacua; the QCD string can end on such a domain wall. The model in which these properties can be understood semiclassically does not coincide with supersymmetric Yang-Mills theory but is evidently in the same universality class.  相似文献   

17.
It is shown that discrepancies between soft pion current algebra (or chiral symmetry) calculations in K?4 and experiments are mostly due to the square root threshold singularity of the pion-pion interaction. For the same reason, chiral symmetry breaking calculations of the scalar K?3 form factor cannot be extended to the threshold of τ → Kπν decay.  相似文献   

18.
We present the symmetry realization of the phenomenologically viable Frampton-Glashow-Marfatia (FGM) two zero texture neutrino mass matrices in the flavor basis within the framework of the type (I+II) seesaw mechanism natural to SO(10) grand unification. A small Abelian cyclic symmetry group Z3 is used to realize these textures except for class C for which the symmetry is enlarged to Z4. The scalar sector is restricted to the Standard Model (SM) Higgs doublet to suppress the flavor changing neutral currents. Other scalar fields used for symmetry realization are at the most two scalar triplets and, in some cases, a complex scalar singlet. Symmetry realization of one zero textures has, also, been presented.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号