首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 949 毫秒
1.
The Charney-Hasegawa-Mima equation applies to a broad variety of hydrodynamic systems ranging from the large-scale planetary circulations to small-scale processes in magnetically confined plasma. This equation harbors flow regimes that have not yet been fully understood. One of those is the recently discovered regime of zonostrophic turbulence emerging in the case of small-scale forced, barotropic two-dimensional turbulence on the surface of a rotating sphere or in its beta-plane approximation. The commingling of strong nonlinearity, strong anisotropy and Rossby waves underlying this regime is highlighted by the emergence of stable systems of alternating zonal jets and a new class of nonlinear waves, or zonons. This Letter elucidates the physics of the zonons and their relation to the large-scale coherent structures.  相似文献   

2.
We elucidate the role of zonal flows in transient phenomena observed during L-H transition by studying a simple L-H transition model which contains the evolution of zonal flows, mean ExB flows, and the ion pressure gradient. Zonal flows are shown to trigger the L-H transition and cause time-transient behavior through the self-regulation of turbulence before a mean shearing, due to a steep pressure profile, secures a quiescent H mode. Surprisingly, this self-regulation lowers the power threshold for the ultimate transition to a quiescent H-mode state.  相似文献   

3.
In magnetized fusion plasmas, trapped electron mode (TEM) turbulence constitutes, together with ion temperature gradient (ITG) turbulence, the dominant source of anomalous transport on ion scales. While ITG modes are known to saturate via nonlinear zonal flow generation, this mechanism is shown to be of little importance for TEM turbulence in the parameter regime explored here. Instead, a careful analysis of the statistical properties of the ExB nonlinearity in the context of gyrokinetic turbulence simulations reveals that perpendicular particle diffusion is the dominant saturation mechanism. These findings allow for the construction of a rather realistic quasilinear model of TEM induced transport.  相似文献   

4.
There is strong evidence in favor of zonal flow suppression in the Ion-Temperature-Gradient (ITG) mode turbulence, specifically close to the linear stability threshold. The present Letter attempts to analytically calculate the effects of zonal flow suppression of the ITG turbulence by deriving a modified dispersion relation including the back-reaction of the zonal flows on the ITG turbulence based on the quasilinear theory. The results are manifested in a reduction of the linear growth rate and an increase in the effective linear ITG threshold.  相似文献   

5.
陆赫林  王顺金 《物理学报》2009,58(1):354-362
在离子温度梯度模(ITG)湍流背景中,通过最小自由度模型中模耦合方式产生带状流,对此模型做了动力学稳定性分析及数值求解.并在此基础上初步探讨了湍流中漂移波与带状流的能量转移,以及雷诺协强与带状流的关系. 关键词: 等离子体 离子温度梯度模 湍流 带状流  相似文献   

6.
陈冉  刘阿娣  邵林明  胡广海  金晓丽 《物理学报》2014,63(18):185201-185201
对等离子体湍流速度场的有效探测,有助于更加深入了解磁约束等离子体湍流以及实现对某些理论预言现象和结构(如带状流)的充分辨识.本文将基于动态程序规划的时间延迟估算技术成功应用于直线磁化等离子体装置中热阴极放电条件下的漂移波湍流角向速度涨落的实验分析,并且其结果清晰再现了漂移波湍流中通过非线性能量耦合自发产生的带状流结构.通过对采用不同频段等离子体湍流涨落通过基于动态程序规划的时间延迟估算分析所再现的带状流结构特征进行比较,进一步就该算法对载波信号中非相干噪声相对水平的抗干扰能力进行了定性评估.这些工作的成功开展,对于通过采用基于动态程序规划的时间延迟估算分析技术更为深入有效探索磁约束等离子体湍流行为特征,尤其是速度涨落场的演化提供了重要的借鉴和参考价值.  相似文献   

7.
尹绍全  彭晓东 《物理学报》2004,53(9):3094-3098
基于电阻性交换模湍流研究了托卡马克等离子体中的环带流激发动力学.利用低自由度近似 对电阻性交换模湍流 环带流系统做了解析和数值求解.结果表明,在足够强的压力梯度( 驱动力)情况下,电阻性交换模湍流将激励出大尺度环带流或振荡型环带流. 关键词: 等离子体 电阻性交换模湍流 环带流  相似文献   

8.
评述和分析了磁约束核聚变理论研究、数值模拟和实验研究等方面最近几年共同关心的一个重要问题——寻找托卡马克等离子体湍流中的带状剪切流(zonal flows)。简要介绍了作者最近对电阻性-重力模湍流中的带状剪切流的研究结果。 Progress of the research on the zonal flows in tokamak plasma turbulence is surveyed, especially it is reviewed that the zonal flows observed in the experiments and numerical simulations on atmosphere turbulence and ocean turbulence and the discovery of H-mode in tokamak experiments how lead the researchers in magnetic confinement fusion community to find out the existence of the zonal flow in tokamak plasma turbulence and subsequently give the experimental verification of its existence. Finally, the results of our research on zonal flow generation and evolution in resistive-g mode turbulence are presented in brief.  相似文献   

9.
陆赫林  陈忠勇  李跃勋  杨恺 《物理学报》2011,60(8):85202-085202
对离子温度梯度模湍流非线性流体方程进行了解耦处理,得到包含磁场剪切效应的带状流与漂移波相互作用的非线性动力学方程.采用调制不稳定性的四波相互作用模型,研究了磁场剪切对带状流产生的影响.研究表明,在k//值较小的范围内,当|k//|增加时,带状流的增长率也呈增加的趋势. 关键词: 托卡马克等离子体 离子温度梯度模湍流 带状流 磁场剪切  相似文献   

10.
Turbulent transport near the critical gradient in toroidal plasmas is studied based on global Landau-fluid simulations and an extended predator-prey theoretical model of ion temperature gradient turbulence. A new type of intermittent transport associated with the emission and propagation of a geodesic acoustic mode (GAM) is found near the critical gradient regime, which is referred to as GAM intermittency. The intermittency is characterized by new time scales of trigger, damping, and recursion due to GAM damping. During the recursion of intermittent bursts, stationary zonal flow increases with a slow time scale due to the accumulation of undamped residues and eventually quenches the turbulence, suggesting that a nonlinear upshift of the critical gradient, i.e., Dimits shift, is established through such a dynamical process.  相似文献   

11.
Hui Li 《中国物理 B》2022,31(6):65207-065207
The structural characteristics of zonal flows and their roles in the nonlinear interaction of multi-scale multi-mode turbulence are investigated numerically via a self-consistent Landau-fluid model. The multi-mode turbulence here is composed of a shorter wavelength electromagnetic (EM) ion temperature gradient (ITG) mode and a Kelvin-Helmholtz (KH) instability with long wavelengths excited by externally imposed small-scale shear flows. For strong shear flow, a prominent periodic intermittency of fluctuation intensity except for dominant ITG component is revealed in turbulence evolution, which onset time depends on the ion temperature gradient and the shear flow amplitudes corresponding to different KH instabilities. It is identified that the intermittency phenomenon results from the zonal flow dynamics, which is mainly generated by the KH mode and back-reacts on it. It is demonstrated that the odd symmetric components of zonal flow (same symmetry as the external flow) make the radial parity of the KH mode alteration through adjusting the drift velocities at two sides of the resonant surface so that the KH mode becomes bursty first. Afterwards, the ITG intermittency follows due to nonlinear mode coupling. Parametric dependences of the features of the intermittency are elaborated. Finally, associated turbulent heat transport is evaluated.  相似文献   

12.
We study collisional damping of electron zonal flows in toroidal electron temperature gradient (ETG) turbulence due to the friction between trapped and untrapped electrons. With the assumption of adiabatic ions, the collisional damping is shown to occur on fast time scales approximately 0.24epsilon(1/2)tau(e). The comparison with the growth rate of electron zonal flows indicates that the shearing by electron zonal flows is unlikely to be a robust mechanism for regulating ETG turbulence. This finding vitiates the claims of several simulation studies that have ignored the effects of collisional damping of electron zonal flows and offers a possible partial explanation of the high levels of electron thermal transport observed in the National Spherical Torus Experiment.  相似文献   

13.
Spontaneous formation of solitary wave structures has been observed in Earth's magnetopause, and is shown to be caused by the breakup of a zonal flow by the action of drift wave turbulence. Here we show matched observations and modeling of coherent, large-scale solitary electrostatic structures, generated during the interaction of short-scale drift wave turbulence and zonal flows at the Earth's magnetopause. The observations were made by the Cluster spacecraft and the numerical modeling was performed using the wave-kinetic approach to drift wave-zonal flow interactions. Good agreement between observations and simulations has been found, thus explaining the emergence of the observed solitary structures as well as confirming earlier theoretical predictions of their existence.  相似文献   

14.
基于Hasegawa-Wakatani湍流模型,数值模拟了托卡马克边缘等离子体中漂移波湍流和相关的反常粒子输运.从等离子体动量守恒方程出发导出了不采用常规的布辛涅斯克近似的带状流方程,论证了大振幅密度扰动和湍性粒子流对激发带状流的贡献可等效地对应于低阶负粘滞阻尼效果.数值模拟表明,大振幅密度扰动的非线性大大增强了带状流饱和振幅,从而有效抑制了湍性粒子输运.研究结果阐明了托卡马克边缘等离子体大振幅密度扰动的非线性对驱动等离子体旋转、动量输运和带状流的重要性.  相似文献   

15.
基于Hasegawa-Wakatani湍流模型,数值模拟了托卡马克边缘等离子体中漂移波湍流和相关的反常粒子输运。从等离子体动量守恒方程出发导出了不采用常规的布辛涅斯克近似的带状流方程,论证了大振幅密度扰动和湍性粒子流对激发带状流的贡献可等效地对应于低阶负粘滞阻尼效果。数值模拟表明,大振幅密度扰动的非线性大大增强了带状流饱和振幅,从而有效抑制了湍性粒子输运。研究结果阐明了托卡马克边缘等离子体大振幅密度扰动的非线性对驱动等离子体旋转、动量输运和带状流的重要性。  相似文献   

16.
A scale for two-dimensional β-plane magnetohydrodynamic turbulence is proposed that characterizes an upper bound of the energy containing interval similar to a classical Rhines scale for neutral fluid turbulence on a -plane. It is found that only unsteady zonal flows with complex temporal dynamics are formed in two-dimensional magnetohydrodynamic turbulence on the -plane. It is shown that flow nonstationarity is due to the appearance of isotropic magnetic islands caused by the Lorentz force in the system. The characteristic dimensions of a flow are in agreement with the proposed scale.  相似文献   

17.
Interaction between small-scale zonal flows and large-scale turbulence is investigated. The key mechanism is identified as radially nonlocal mode coupling. Fluctuating energy can be nonlocally transferred from the unstable longer to the stable or damped shorter wavelength region, so that the turbulence spectrum is seriously deformed and deviates from the nonlinear power law structure. Three-dimensional gyrofluid ion-temperature gradient (ITG) turbulence simulations show that an ion transport bursting behavior is consistently linked to the spectral deformity with the causal role of ITG-generated zonal flows in tokamak plasmas.  相似文献   

18.
The effect of collisional damping of zonal flows (ZFs) on ion-temperature gradient (ITG) driven turbulence in a toroidal plasma is investigated by means of a 3D global fluid model with flux boundary conditions. Results from simulations show an increase of the energy confinement time and a stabilization of turbulence with the inverse of the collisionality nu(*). The stabilization mechanism is identified as an effect of the increased shearing rate of ZFs, which shift upwards the ITG turbulence effective threshold. The shearing rate of ZFs is also seen to depend on the injected power. As a consequence, the effective heat conductivity depends parametrically on the input power.  相似文献   

19.
The interaction between broadband drift mode turbulence and zonal flows has been studied through the wave-kinetic approach. Simulations have been conducted in which a particle-in-cell representation is used for the quasiparticles, while a fluid model is employed for the plasma. The interactions have been studied in a plasma edge configuration which has applications in both tokamak physics and magnetopause boundary layer studies. Simulation results show the development of a zonal flow through the modulational instability of the drift wave distribution, as well as the existence of solitary zonal flow structures about an ion gyroradius wide, drifting towards steeper relative density gradients.  相似文献   

20.
用中平面往复快速扫描6探针组观测HL-2A装置边缘等离子体的扰动特性。在一次放电中能测量到边缘等离子体参数的时空分布及其涨落量,雷诺胁强与极向流和带状流的关系,以及静电涨落驱动的粒子通量和热通量的径向变化。在多发弹丸注入(MPI)和多脉冲超声分子束注入(SMBI)条件下,研究了边缘参数的涨落和相关特性。实验结果表明:SMBI和MPI等注入手段改变了边缘的扰动特性;雷诺胁强的径向梯度可以驱动带状流,抑制湍流输运。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号