首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The low temperature magnetic and transport properties of the Pr0.5Ca0.5Mn1-xNixO3 manganites ( 0≤ x ≤0.1) have been investigated. The presence of Ni hinders the charge and orbital ordering observed in Pr0.5Ca0.5MnO3 and favors the creation of ferromagnetic regions, leading to phase separation. The ferromagnetic fractions induced by the Ni substitution have been estimated from magnetization measurements, they are large and reach 40% for 4% of Ni. Steps are observed in the M ( H ) and ρ( H ) curves of all the samples at T < 5 K. They are similar to the steps observed in Pr0.5Ca0.5Mn1-xMxO3, where M is a non magnetic cation (Mg2+, Ga3+,...), and for which the ferromagnetic fractions are very small (less than 2%), however, their appearance is restricted to lower temperatures (T < 5 K) with Ni dopant than with non magnetic cations. This study shows that steps can be observed in a wide range of phase-separated systems, even when the ferromagnetic fraction is very large. Received 5 April 2002 / Received in final form 8 July 2002 Published online 14 October 2002 RID="a" ID="a"e-mail: antoine.maignan@ismra.fr  相似文献   

2.
A three-terminal device based on electronic phase separated manganites is suggested to produce high performance resistive switching. Our Monte Carlo simulations reveal that the conductive filaments can be formed/annihilated by reshaping the ferromagnetic metal phase domains with two cross-oriented switching voltages. Besides, by controlling the high resistance state(HRS) to a stable state that just after the filament is ruptured, the resistive switching remains stable and reversible, while the switching voltage and the switching time can be greatly reduced.  相似文献   

3.
Orbital order present in several transition metal compounds could give rise to topological defects. Here we argue that the topological defects in orbital ordered half doped manganites are orbital solitons that carry a charge of +/-e/2. When extra charge is added to the system an array of solitons is formed and an incommensurate solitonic phase occurs. The striking experimental asymmetry in the phase diagram as electrons or holes are added to half doped manganites is explained by the energy difference between positive and negative charged solitons. The presence of nanoscale inhomogeneities in manganites is naturally explained by the existence of solitonic phases.  相似文献   

4.
We discuss the effects of a novel ‘intrinsic’ disorder in hole-doped rare-earth manganites. Using effective field theory as well as direct numerical simulations, we show that this disorder can have dramatic effects in terms of the transition from ferromagnetic insulator to ferromagnetic metal upon hole-doping, including an Anderson localized regime where variable range hopping may be observed.  相似文献   

5.
There is an increasing experimental evidence that phase separation between insulating and metallic phase plays an important role in the physics of manganites. On general grounds one can argue that the electronic density in the metallic and insulating region will be generally different. This implies that phase separation of the ordinary “Maxwell construction” type is frustrated by the long-range Coulomb interaction. We present a generalization of Maxwell construction to this situation. The system is assumed to separate in islands of one phases hosted by the other. The size of the islands is determined minimizing a free energy that takes into account both surface energy and Coulomb effects. We discuss the peculiarities of this kind of phase separation and the consequences for the manganites. In particular, we present an explanation for the non-monotonous behavior of the Curie temperature as a function of doping.  相似文献   

6.
We study the two orbital double-exchange model in two dimensions including antiferromagnetic (AFM) superexchange, Jahn-Teller coupling, and substitutional disorder. At hole doping x = 0.5 we focus on phase competition between the ferromagnetic metal (FMM) and the charge-ordered (CO) and orbital-ordered (OO) CE state and compare the impact of weak homogeneous disorder to that of a low density of strong scatterers. Even moderate homogeneous disorder suppresses the CE-CO-OO phase and leads to a glass with nanoscale correlations, while dilute strong scatterers of comparable strength convert the CE-CO-OO phase to a phase separated state with ferromagnetic metal and AFM-CO-OO clusters.  相似文献   

7.
We present a novel ground state that explains the continuous charge modulated diagonal order recently observed in manganese oxides, at hole concentrations x larger than one-half. In this diagonal phase the charge is modulated with a predominant Fourier component inversely proportional to 1-x. Magnetically this state consists of antiferromagnetically coupled zigzag chains. For a wide range of physical parameters such as electron-phonon coupling, antiferromagnetic interaction between Mn ions, and on-site Coulomb repulsion, the diagonal phase is the ground state of the system. Also we find that the diagonal modulation of the electron density is only a small fraction of the average charge, a much smaller modulation than the one obtained by distributing Mn+3 and Mn+4 ions. We discuss also the spin and orbital structure properties of this new diagonal phase.  相似文献   

8.
We find an unconventional nucleation of a low-temperature paramagnetic metal phase with a monoclinic structure from the matrix of a high-temperature antiferromagnetic insulator phase with a tetragonal structure in a strongly correlated electronic system BaCo0.9Ni0.1S1.97. Such unconventional nucleation leads to a decrease in resistivity by several orders with relaxation at a fixed temperature. The novel dynamical process could arise from the competition of strain fields, Coulomb interactions, magnetic correlations, and disorders. Such competition may frustrate the nucleation, giving rise to a slow, nonexponential relaxation and "physical aging" behavior.  相似文献   

9.
The properties of single crystals of weakly doped lanthanum manganites La1?xAxMnO3 (A = Ca, Ce, Sr; x = 0, 0.07?0.1) have been studied in the temperature range from 77 to 400 K. It is established that these lanthanum manganites exhibit (in addition to the well-known characteristic features observed in the region of the temperature of magnetic ordering) changes in the electrical and magnetic properties in the region of room temperature (T ≈ 270–300 K), which is about two times the Curie temperature (T ≈ 120–140 K) and is far from the temperature of structural transitions in the samples studied. The results are explained in terms of phase separation related to the formation of magnetic clusters in the nonconducting medium. The phase separation is caused by a gain in the exchange energy and by the development of elastic stresses in the crystal lattice and proceeds via combination of small-radius magnetic polarons into a large-size magnetic cluster containing several charge carriers. The short-range order in the cluster appears and the phase separation begins at a temperature Tps, which is close to TC ≈ 300 K, typical of doped conducting manganites. The results of magnetic measurements show that, as the temperature decreases from 300 to 190 K, the size of superparamagnetic droplets increases from about 8 to 15 Å.  相似文献   

10.
11.
It is shown that antiferromagnetic ordering in doped manganites with strong double-exchange interaction is transformed into ferromagnetic canted ordering with residual antiferromagnetic behavior in the basal plane as a result of hopping of mobile electron. The canting angle between the core magnetiztions is controlled by the competition of the Heisenberg antiferromagnetic exchange and double exchange. The temperatures of the paramagnet-antiferromagnet and paramagnet-canted ferromagnetic phase transitions are calculated. The results on the dependence of the magnetization in the canted phase and critical temperatures on the doping degree are in qualitative agreement with experiment. The form of uniform oscillations of core magnetiztions in the canted ferromagnetic phase of a doped manganite sample with hopping conduction is analyzed with and without allowance for relaxation of mobile electrons to the lattice. We propose a mechanism for the ferromagnetic resonance broadening and its resonance frequency shift in a ferromagnetic conducting sample (hopping conduction) of doped manganite due to double exchange. The resonance frequency shift and the ferromagnetic resonance damping constant (linewidth) are calculated in this model. In contrast to other relaxation mechanisms, the model is based on the fact that mobile electrons rapidly relax to the lattice (over a time on the order of the precession period).  相似文献   

12.
New effects are predicted which appear at the phase conjugation of a light wave transmitted through a dynamical optical system (nonstationary medium). The theory of these effects is developed and their relation with the dynamical form factor of the system is established. The predicted effects may be used as a basis of a new optical method for studying fast processes in matter which does not require either short light pulses or fast photodetectors.  相似文献   

13.
A physical mechanism driving the resistance switching in heterocontacts, formed by a metal counterelectrode and electrically conducting bulk perovskite manganites, is discussed. The nature of the inelastic, charge-hopping transport inside insulating and strongly inhomogeneous metal/manganite interfaces is studied theoretically. Comparison with measured current-voltage characteristics for a La0.67Ca0.33MnO3/Ag heterostructure in a high-resistance state reveals the presence of one or more charge traps along a conduction path within the interface. In a low-resistance state the main charge-transferring events are direct tunneling ones. The analysis of electrical noise measurements for a La0.82Ca0.18MnO3 single crystal in three different charge-transport regimes shows scattering centers with a broad, flat spectrum of excitation states, independent of manganite electrical and/or magnetic characteristics. All of these results are consistent with an oxygen-drift model for a bistable resistance state in perovskites.   相似文献   

14.
The correlation between the phase diagrams of narrow-band manganites and the abrupt magnetization jumps observed previously at a magnetic-field-induced transition from the antiferromagnetic to ferromagnetic state has been studied. This transition occurs during several milliseconds and is related to a spontaneous thermal avalanche; however, the mechanisms of the avalanche formation and development have not been conclusively established. It has been shown that different compositions (Pr0.67Ca0.33MnO3, Sm0.55Sr0.45Mn18O3, and Eu0.58Sr0.42MnO3) are qualitatively characterized by analogous phase diagrams with a negative incline of the antiferromagnet/ferromagnet interface in the H-T plane; apparently, this analogy determines the avalanche-like character of the transition.  相似文献   

15.
The electron magnetic resonance spectra of Sm1?x Sr x MnO3 (x = 0.30, 0.40, 0.45) manganites have been studied. At temperatures that are higher than the Curie point by several tens of kelvins, samples with x = 0.40 and 0.45 exhibit a ferromagnetic resonance (FMR) spectrum imposed on their usual EPR spectrum. The FMR spectrum appears as the applied magnetic field H exceeds a certain critical field H c , which decreases upon cooling and becomes zero at T = T C . These results agree with the magnetic-measurement data and indicate the magnetic-field-induced nucleation and growth of ferromagnetic domains in a paramagnetic matrix. In the initial growth stage, the volume of the ferromagnetic domains is proportional to (H ? H c )β, where β = 4.0 ± 0.3, and it changes in phase with magnetic field modulation up to a frequency of 100 kHz. In the same field and temperature ranges, hysteretic phenomena and narrow unstable spectral lines are detected; these lines indicate a dynamic character of the phase separation. The results obtained are interpreted in terms of the competition of different types of magnetic and charge ordering.  相似文献   

16.
The paper reviews the physical properties of the R1?xAxMnO3 manganites (R=La, Pr, Nd, Sm, etc., A=Ca, Sr, Ba) in the region of their electron doping where the divalent atom concentration x in the compound lies in the interval 0.5<x<1.0. Experimental magnetic phase diagrams of the most well-studied compounds and the results of theoretical calculations of these diagrams made in the tight-binding approximation within the degenerate double-exchange model for T=0 are presented. The experimental section of the review deals primarily with neutron diffraction studies of the magnetic and crystal structures of the manganites, and the theoretical part, with the relation between their magnetic and orbital structures. The review describes, in considerable detail, the method of calculation of the energy spectrum ?(k) and of the total carrier energy for all possible magnetic and orbital configurations of the system corresponding to the translation symmetry of the lattice. The theoretical analysis is carried out separately for two models of the crystal structure, with two and four manganese atoms in the unit cell. All equilibrium magnetic and orbital configurations of the four-sublattice manganite model were determined by minimizing the total energy of the system with respect to the directions of the local manganese magnetic moments and orbital states of the eg electrons. It is shown that, by using the effective Hamiltonian of the degenerate double-exchange model for the eg electrons, which takes into account the eg level splitting, and the Heisenberg Hamiltonian of the localized t2g electrons, one can describe the diversity of the magnetic phases, the sequence of their alternation with increasing x, and the correlation between the spin and orbital degrees of freedom, which are observed in most electron-doped manganites.  相似文献   

17.
Mixed-valence manganites have attracted considerable research focus in recent years not only because of the potential application of colossal magnetoresistance(CMR) in magnetic devices,but also because of many intriguing physical properties observed in these materials.Doping elements at A-site can alter the filling of 3d Mn band and the tolerance factor.Therefore the hole-and electron-doped CMR manganites exhibit a rich phase diagram.In addition,more theoretical and experimental results suggest that phase separation is a critical factor for the understanding of CMR phenomena.Recently,there is an increasing interest in the fabrication and investigation on manganite-based heterojunction,which demonstrated excellent rectifying property,large MR,and photovoltaic effect.  相似文献   

18.
Temperature dependencies of dielectric permittivity of TlGaSe2 have been measured under various thermal cycles. Peculiarities of anomalies in temperature dependencies of dielectric permittivity corresponding to structural phase transitions at 108 and 115?K are discussed. The coexistence of two different incommensurate structures in TlGaSe2 was proposed. The phase transitions at 108 and 115?K are considered as commensurate lock-in transitions. As a result a new model of the structural phase transitions in TlGaSe2 has been suggested.  相似文献   

19.
P Singha Deo  A M Jayannavar 《Pramana》2001,56(2-3):439-452
Mesoscopic systems have provided an opportunity to study quantum effects beyond the atomic realm. In these systems quantum coherence prevails over the entire sample. We discuss several novel effects related to persistent currents in open systems which do not have analogues in closed systems. Some phenomena arising simultaneously due to two non-classical effects namely, Aharonov-Bohm effect and quantum tunneling are presented. Simple analysis of sharp phase jumps observed in double-slit Aharonov-Bohm experiments is given. Some consequences of parity violation are elaborated. Finally, we briefly describe the dephasing of Aharonov-Bohm oscillations in Aharonov-Bohm ring geometry due to spin-flip scattering in one of the arms. Several experimental manifestations of these phenomena and their applications are given.  相似文献   

20.
A phenomenological model is proposed to describe the magnetic and magnetoresistance properties of ferromagnetic manganites. This model is based on the methods used to describe hysteretic systems, takes into account phase separation effects, and assumes the transition of ferromagnetic manganites into the Griffiths phase at above the Curie temperature. This formalism makes it possible to describe the conducting properties of the systems in the temperature range from low temperatures to the Griffiths temperature (T G). This approach is used to qualitatively explain the experimental laws of the behavior of ferromagnetic manganites using the temperature and field dependences of the electrical resistivity and magnetization, the hysteretic properties, and the magnetoresistive effect (MRE) and to classify manganites in the magnitude of the MRE. The parameter that is responsible for the response of a system to thermal effects is the ratio of the maximum energy barrier separating various states of a system at zero temperature W A (0) to thermal fluctuation energy W Cfl at T G. The W A (0)/W Cfl ratio is found to determine the temperature range of the Griffiths phase. The relation between the magnitudes of the MRE and parameter W A (0)/W Cfl for a certain system is revealed. The behavior of the magnetization and electrical resistivity of manganites in the Griffiths phase is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号