首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brownian particles moving in a spatially asymmetric but periodic potential (ratchet), with an external load force and connected to an alternating hot and cold reservoir, are modeled as a microscopic heat engine, referred to as the Brownian heat engine. The heat flow via both the potential energy and the kinetic energy of the particles are considered simultaneously. The forward and backward particle currents are determined using an Arrhenius' factor. Expressions for the power output and efficiency are derived analytically. The maximum power output and efficiency are calculated. It is expounded that the Brownian heat engine is always irreversible and its efficiency cannot approach the efficiency ηC of the Carnot heat engine even in quasistatic limit. The influence of the main parameters such as the load, the barrier height of the potential, the asymmetry of the potential and the temperature ratio of the heat reservoirs on the performance of the Brownian heat engine is discussed in detail. It is found that the Brownian heat engines may be controlled to operate in different regions through variation of some parameters.  相似文献   

2.
We analyze the efficiency of thermal engines (either quantum or classical) working with a single heat reservoir like an atmosphere. The engine first gets an energy intake, which can be done in an arbitrary nonequilibrium way e.g. combustion of fuel. Then the engine performs the work and returns to the initial state. We distinguish two general classes of engines where the working body first equilibrates within itself and then performs the work (ergodic engine) or when it performs the work before equilibrating (non-ergodic engine). We show that in both cases the second law of thermodynamics limits their efficiency. For ergodic engines we find a rigorous upper bound for the efficiency, which is strictly smaller than the equivalent Carnot efficiency. I.e. the Carnot efficiency can be never achieved in single reservoir heat engines. For non-ergodic engines the efficiency can be higher and can exceed the equilibrium Carnot bound. By extending the fundamental thermodynamic relation to nonequilibrium processes, we find a rigorous thermodynamic bound for the efficiency of both ergodic and non-ergodic engines and show that it is given by the relative entropy of the nonequilibrium and initial equilibrium distributions. These results suggest a new general strategy for designing more efficient engines. We illustrate our ideas by using simple examples.  相似文献   

3.
Based on finite time thermodynamics, an irreversible combined thermal Brownian heat engine model is established in this paper. The model consists of two thermal Brownian heat engines which are operating in tandem with thermal contact with three heat reservoirs. The rates of heat transfer are finite between the heat engine and the reservoir. Considering the heat leakage and the losses caused by kinetic energy change of particles, the formulas of steady current, power output and efficiency are derived. The power output and efficiency of combined heat engine are smaller than that of single heat engine operating between reservoirs with same temperatures. When the potential filed is free from external load, the effects of asymmetry of the potential, barrier height and heat leakage on the performance of the combined heat engine are analyzed. When the potential field is free from external load, the effects of basic design parameters on the performance of the combined heat engine are analyzed. The optimal power and efficiency are obtained by optimizing the barrier heights of two heat engines. The optimal working regions are obtained. There is optimal temperature ratio which maximize the overall power output or efficiency. When the potential filed is subjected to external load, effect of external load is analyzed. The steady current decreases versus external load; the power output and efficiency are monotonically increasing versus external load.  相似文献   

4.
We study the efficiency of one-dimensional thermally driven Brownian ratchets or heat engines. We identify and compare the three basic setups characterized by the type of the connection between the Brownian particle and the two heat reservoirs: (i) simultaneous, (ii) alternating in time, and (iii) position dependent. We make a clear distinction between the heat flow via the kinetic and the potential energy of the particle, and show that the former is always irreversible and it is only the third setup where the latter is reversible when the engine works quasistatically. We also show that in the third setup the heat flow via the kinetic energy can be reduced arbitrarily, proving that even for microscopic heat engines there is no fundamental limit of the efficiency lower than that of a Carnot cycle.  相似文献   

5.
Systems of photosynthetic reaction centres have been modelled as heat engines, while it has also been reported that the efficiency and power of such heat engines can be enhanced by quantum interference|a trait that has attracted much interest. We compare two definitions of the work of such a photosynthetic heat engine, i.e. definition A used by Weimer et al. and B by Dorfman et al. We also introduce a coherent interaction between donor and acceptor (CIDA) to demonstrate a reversible energy transport. We show that these two definitions of work can impart contradictory results, that is, CIDA enhances the power and efficiency of the photosynthetic heat engine with definition B but not with A. Additionally, we find that both reversible and irreversible excitation-energy transport can be described with definition A, but definition B can only model irreversible transport. As a result, we conclude that definition A is more suitable for photosynthetic systems than definition B.  相似文献   

6.
We introduce a class of quantum heat engines which consists of two-energy-eigenstate systems, the simplest of quantum mechanical systems, undergoing quantum adiabatic processes and energy exchanges with heat baths, respectively, at different stages of a cycle. Armed with this class of heat engines and some interpretation of heat transferred and work performed at the quantum level, we are able to clarify some important aspects of the second law of thermodynamics. In particular, it is not sufficient to have the heat source hotter than the sink, but there must be a minimum temperature difference between the hotter source and the cooler sink before any work can be extracted through the engines. The size of this minimum temperature difference is dictated by that of the energy gaps of the quantum engines involved. Our new quantum heat engines also offer a practical way, as an alternative to Szilard's engine, to physically realise Maxwell's daemon. Inspired and motivated by the Rabi oscillations, we further introduce some modifications to the quantum heat engines with single-mode cavities in order to, while respecting the second law, extract more work from the heat baths than is otherwise possible in thermal equilibria. Some of the results above are also generalisable to quantum heat engines of an infinite number of energy levels including 1-D simple harmonic oscillators and 1-D infinite square wells, or even special cases of continuous spectra.  相似文献   

7.
Under the assumption of low-dissipation, a unified model of generalized Carnot cycles with external leakage losses is established. Analytical expressions for the power output and efficiency are derived. The general performance characteristics between the power output and the efficiency are revealed. The maximum power output and efficiency are calculated. The lower and upper bounds of the efficiency at the maximum power output are determined. The results obtained here are universal and can be directly used to reveal the performance characteristics of different Carnot cycles, such as Carnot heat engines, Carnot-like heat engines, flux flow engines, gravitational engines, chemical engines, two-level quantum engines,etc.  相似文献   

8.
程海涛  何济洲  肖宇玲 《物理学报》2012,61(1):10502-010502
研究了周期性双势垒锯齿势中, 布朗粒子在外力作用下沿空间坐标方向交替地和高、低温热库接触构成的布朗热机的热力学性能. 考虑布朗粒子动能的变化以及高、 低温库之间热漏的存在, 通过数值计算分析势垒高度、势比、外力等参数对布朗热机效率的影响. 研究表明:当考虑热漏时, 布朗热机始终是不可逆的, 效率小于卡诺效率; 并且当热漏很小时, 势比的增大在一定程度上可提高布朗热机的效率; 其功率与效率之间的关系曲线为闭合线. 当不考虑热漏时, 其功率与效率之间的关系曲线为开型线, 但由于布朗粒子动能的变化引起的不可逆热流, 热机的效率依然小于卡诺效率. 关键词: 布朗热机 双势垒锯齿势 热漏 热力学性能  相似文献   

9.
The article considers some aspects of the research methodology of micro heat power plants based on internal combustion engines with air cooling and cogeneration based on energy balance equations and the laws of heat transfer. The research is conducted for such a setup based on the Hitachi internal combustion engine with 2.4 kW capacity. It has shown the efficiency of cogeneration use in the form of useful heat flow from air, cooling the cylinder head, with its further heating by utilizing the heat of flue gases in an additional plate heat exchanger. It has been shown that the cogeneration can save fuel costs 3–10 times compared with heat guns, depending on the duration of the setup use.  相似文献   

10.
The efficiency of macroscopic heat engines is restricted by the second law of thermodynamics. They can reach at most the efficiency of a Carnot engine. In contrast, heat currents in mesoscopic heat engines show fluctuations. Thus, there is a small probability that a mesoscopic heat engine exceeds Carnot's maximum value during a short measurement time. We illustrate this effect using a quantum point contact as a heat engine. When a temperature difference is applied to a quantum point contact, the system may be utilized as a source of electrical power under steady state conditions. We first discuss the optimal working point of such a heat engine that maximizes the generated electrical power and subsequently calculate the statistics for deviations of the efficiency from its most likely value. We find that deviations surpassing the Carnot limit are possible, but unlikely.  相似文献   

11.
The efficiency of macroscopic heat engines is restricted by the second law of thermodynamics. They can reach at most the efficiency of a Carnot engine. In contrast, heat currents in mesoscopic heat engines show fluctuations. Thus, there is a small probability that a mesoscopic heat engine exceeds Carnot's maximum value during a short measurement time. We illustrate this effect using a quantum point contact as a heat engine. When a temperature difference is applied to a quantum point contact, the system may be utilized as a source of electrical power under steady state conditions. We first discuss the optimal working point of such a heat engine that maximizes the generated electrical power and subsequently calculate the statistics for deviations of the efficiency from its most likely value. We find that deviations surpassing the Carnot limit are possible, but unlikely.  相似文献   

12.
赵丽梅  张国锋 《物理学报》2017,66(24):240502-240502
研究了以带有Dzyaloshinski-Mariya(DM)相互作用的两比特自旋体系为工质的量子纠缠Otto热机和量子Stirling热机.两种不同热机在各自的循环过程中,通过保持其他参量不变,只有DM相互作用发生改变,从而分析热机循环中DM相互作用与热传递、做功以及效率等热力学量之间的关系.研究结果表明:DM相互作用对两种热机的基本量子热力学量都具有重要的影响,但量子Stirling热机由于回热器的使用,其循环效率会大于量子Otto纠缠热机的效率,甚至会超过Carnot效率;得到了量子Otto纠缠热机和量子Stirling热机做正功的条件.因此,在这两个纠缠体系中,热力学第二定律都依然成立.  相似文献   

13.
加热器在热声发动机的能量传递和转化过程中起着重要作用,是热声发动机的核心部件之一。目前热声发动机大多采用电能驱动,采用燃气直接燃烧驱动将对热声发动机的实用化具有积极促进意义。根据热声发动机的工作特点,以时均流对流换热公式为依据,设计了一种新型燃气燃烧驱动加热器,并应用于现有的混合型热声发动机实验台上,取得了较好的实验结果。  相似文献   

14.
A new model of micro-/nanoscaled heat engines consisting of two thin long tubes with the same length but different sizes of cross section, which are filled up with ideal quantum gases and operated between two heat reservoirs, is put forward. The working fluid of the heat engine cycle goes through four processes, which include two isothermal processes and two isobaric processes with constant longitudinal pressure. General expressions for the power output and efficiency of the cycle are derived, based on the thermodynamic properties of confined ideal quantum gases. The influence of the size effect on the power output and efficiency is discussed. The differences between the heat engines working with the ideal Bose gas and Fermi gas are revealed. The performance of the heat engines operating at weak gas degeneracy and high temperatures is further analyzed. The results obtained are more general and significant than those in the current literature.  相似文献   

15.
With a class of quantum heat engines which consists of two-energy-eigenstate systems undergoing, respectively, quantum adiabatic processes and energy exchanges with heat baths at different stages of a cycle, we are able to clarify some important aspects of the second law of thermodynamics. The quantum heat engines also offer a practical way, as an alternative to Szilard's engine, to physically realize Maxwell's demon. While respecting the second law on the average, they are also capable of extracting more work from the heat baths than is otherwise possible in thermal equilibrium.  相似文献   

16.
ABSTRACT

Clusters and shells based on icosahedral symmetry are characterised, constructed from component particles that retain memory of their neighbours in a specific reference structure. This memory provides the particles with ‘addressable’ characteristics, with a ground state corresponding to the structure where all the components are correctly addressed in terms of the local environment. The interparticle potentials have separate attractive and repulsive components, defined by the reference structure. For a single target structure, the relaxation efficiency is mostly determined by the variation of the attractive component for correctly and incorrectly addressed particles. The effects of varying the addressability can be visualised directly in terms of the underlying energy landscape, and follow quantitative predictions from catastrophe theory. A doubly-addressable landscape can be designed within the same framework. In well-defined regions of parameter space, the predicted global minima for aggregates of the target cluster (target monomer) form ‘superclusters’, which can be described in terms of multiple interacting copies of local minima for the monomer. The predicted lowest energy superclusters formed from aggregates of addressable icosahedral clusters and shells are themselves based on icosahedral packing. These hierarchical icosahedral structures could be realised experimentally if particles can be synthesised to match the interactions encoded in the addressable potentials.  相似文献   

17.
A heat engine is a machine which uses the temperature difference between a hot and a cold reservoir to extract work. Here both reservoirs are quantum systems and a heat engine is described by a unitary transformation which decreases the average energy of the bipartite system. On the molecular scale, the ability of implementing a (good) unitary heat engine is closely connected to the ability of performing logical operations and classical computing. This is shown by several examples:
(1)  The most elementary heat engine is a SWAP-gate acting on 1 hot and 1 cold two-level systems with different energy gaps.
(2)  An optimal unitary heat engine on a pair of 3-level systems can directly implement OR and NOT gates, as well as copy operations. The ability to implement this heat engine on each pair of 3-level systems taken from the hot and the cold ensemble therefore allows universal classical computation.
(3)  Optimal heat engines operating on one hot and one cold oscillator mode with different frequencies are able to calculate polynomials and roots approximately.
(4)  An optimal heat engine acting on 1 hot and n cold 2-level systems with different level spacings can even solve the NP-complete problem KNAPSACK. Whereas it is already known that the determination of ground states of interacting many-particle systems is NP-hard, the optimal heat engine is a thermodynamic problem which is NP-hard even for n non-interacting spin systems. This result suggests that there may be complexity-theoretic limitations on the efficiency of molecular heat engines.
  相似文献   

18.
肖宇玲  何济洲  程海涛 《物理学报》2014,63(20):200501-200501
研究了单势垒锯齿势中,布朗粒子在外力和空间周期温度场作用下构成的布朗热机的热力学性能.考虑布朗粒子动能变化以及高、低温库之间热漏引起的热流.用Smoluchowski方程描述粒子在黏性介质中的动力学特性,推导出高、低温库的热流以及热机功率和效率的解析表达式.通过数值计算分析势垒高度、外力和温库边界对热机性能的影响.研究表明:由于动能变化和热漏引起的不可逆热流的存在,布朗热机为不可逆热机,热机的功率效率特性为一闭合的关系曲线;势垒边界与温库边界重合时,热机的功率达到最大值;通过改变温库边界的位置,可以在一定范围内提高热机的效率,但同时减小了热机的输出功率.  相似文献   

19.
Optimal configuration of a class of endoreversible heat engines with fixed duration, input energy and radiative heat transfer law (q ∝ Δ(T 4)) is determined. The optimal cycle that maximizes the efficiency of the heat engine is obtained by using optimal-control theory, and the differential equations are solved by the Taylor series expansion. It is shown that the optimal cycle has eight branches including two isothermal branches, four maximum-efficiency branches, and two adiabatic branches. The interval of each branch is obtained, as well as the solutions of the temperatures of the heat reservoirs and the working fluid. A numerical example is given. The obtained results are compared with those obtained with the Newton’s heat transfer law for the maximum efficiency objective, those with linear phenomenological heat transfer law for the maximum efficiency objective, and those with radiative heat transfer law for the maximum power output objective.  相似文献   

20.
振荡流共轭换热现象广泛存在于热声热机等工程应用中.基于双分布格子-Boltzmann模型,对平行平板间振荡流共轭换热进行了数值模拟.通过假定共轭界面处流体和固体的未知内能分布函数均为对应的平衡态滑移修正格式,提出了一种处理共轭换热边界的新方法.模拟结果表明,该方法可以保证共轭界面上温度连续和热流连续.分析了不同流体与固体导热系数比情况下振荡流共轭换热的速度场、温度场以及热流分布的特点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号