首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of the studies concerning photo- and thermally initiated copolymerization of bis[4(2-hydroxy-3-methacryloyloxypropoxy)phenyl]sulfide (BES-DM) with N-vinyl-2-pyrrolidone (NVP) and thermo-mechanical properties of resulting compositions are presented. BES-DM was obtained in the two-step reaction. In the first step, the epoxy resin was synthesized. It was obtained in the reaction of bis(4-hydroxyphenyl)sulfide with 2-(chloromethyl)oxirane. In the second step, esterification of the obtained diglycidyl ether was carried out with the use of methacrylic acid. New copolymers with different degrees of crosslinking were obtained. The study describes the effect of crosslinking degree and the method of polymerization initiation on the properties of the new compositions. Density, viscosity, glass temperature, Young’s modulus, hardness, tensile strength were determined before and after curing for the compositions of BES-DM and NVP. Moreover, the dynamic-mechanical and thermal properties for the chosen samples of copolymers were studied.  相似文献   

2.
Syntheses of the new photoluminescent copolymers: 2,7-(2-hydroxy-3-methacryloyloxypropoxy)naphthalene with N-vinyl-2-pyrrolidone (NVP) are presented. The obtained compound was copolymerised with different ratios of active diluent (NVP). Thermo- and photo-polymerisations of the compositions with use of the initiators: α,α′-azoiso-bis-butyronitrile and 2,2-dimethoxy-2-phenyl-acetophenone were carried out. The following properties were determined: density, polymerisation shrinkage, glass transition temperature, Young’s modulus, hardness and tensile strength. Moreover, the dynamic-mechanical, thermal and photoluminescent properties were studied. These materials may have potential use as luminophores and coatings filtering harmful UV radiation.  相似文献   

3.
Summary The composition of the dental monomer BisGMA was analyzed using various techniques of high-performance liquid chromatography (HPLC): isocratic and gradient-elution, normal-phase and reversed-phase-HPLC. These techniques emphasized that BisGMA is not a single compound corresponding to the well known structure of 2,2-Bis[4-(2-hydroxy-3-methacryloyloxypropoxy)phenyl]propane and allowed the separation of BisGMA oligomers and isomers in dental restorative materials. The analysis of the dental resins emphasized the presence of three isomers for each BisGMA oligomer.  相似文献   

4.
New transition metal complexes of Co(II), Cu(II), Ni(II), and Fe(III) of the ligands 6,6′-(1E,1′E)-(4,5-dimethyl-1,2-phenylene)bis(azan-1-yl-1-ylidene)bis(methan-1-yl-1-ylidene)bis(7-hydroxy-5-methoxy-2-methyl-4H-chromen-4-one) H2L1 and 6,6’-(1E,1′E)-cyclohexane-1,2-diylbis(azan-1-yl-1-ylidene)bis(methan-1-yl-1-ylidene)bis(7-hydroxy-5-methoxy-2-methyl-4H-chromen-4-one) H2L2 have been prepared and characterized using physio-chemical and spectroscopic methods. The results obtained for the complexes indicated that the geometries of the metal centres are either square planar or octahedral. Cyclopropanation reactions of unactivated olefins by ethyldiazoacetate (EDA) in the presence of [L1Cu]·H2O, [L2Cu]·2H2O and [L2*Co]·2H2O as catalysts were examined. The results showed that only [L2*Co]·2H2O can act as a catalyst for the cyclopropanation reaction of unactivated olefins with very high selectivity (up to 99% based on EDA).  相似文献   

5.
Two families of ester-type banana monomers are presented, 1,3-phenylene bis{4-[4′-(10-undecenyloxy)benzoyloxy]benzoate}s and 1,3-phenylene bis{[4′-(10-undecenyloxy)]-1,1′-biphenyl-4-carboxylate}s, in which the nature of the substituents on the central phenyl ring and the side arms was varied. The mesophase behavior of the monomers, including B2 and B7 phases, was correlated with their chemical structure and was compared with that of analogous azomethine-type banana mesogens. It is also shown that the banana monomers can be incorporated into new architectures of liquid crystal polymers.  相似文献   

6.
Cooligo(lactone) macromonomers were prepared by cooligomerisation of (S,S)-3,6-dimethyl-1,4-dioxane-2,5-dione (L-lactide), 1-oxacyclohexane-2-one (δ-valerolactone) or 1-oxacycloheptane-2-one (ε-caprolactone), initiated by 2,2-bis[4-(2-hydroxy-3-methacryloyloxypropoxy)phenyl]-propane (BisGMA). Two different reaction ways were used for the synthesis: parallel reaction and step reaction of lactones and L-lactide. The macromonomers were characterised by differential scanning calorimetry (DSC), size exclusion chromatography (SEC), 1H- and 13C-NMR spectroscopy and MALDI-TOF mass spectrometry. Cooligo(lactone) macromonomers prepared by parallel and by step reaction show different molecular structures resulting in different properties. Their glass transition temperatures depend on the molar ratio of lactide and lactone as well as on the degree of oligomerisation. Macromonomers with high amounts of L-lactide units are partially crystalline.  相似文献   

7.
The preparation of triarylamine N‐functionalized 3,6‐linked carbazole homopolymers as well as alternating copolymers with 2,5‐diphenyl‐[1,3,4]oxadiazole and benzo[1,2,5]thiadiazole was undertaken using Suzuki cross‐coupling polymerization procedures associating 3,6‐bis(4,4,5,5‐tetramethyl‐[1,3,2]dioxaborolan‐2‐yl)‐9‐(bis[4‐(2‐butyl‐octyloxy)‐phenyl]‐amino‐phen‐4‐yl)‐carbazole and, respectively, 3,6‐dibromo‐9‐(bis[4‐(2‐butyl‐octyloxy)‐phenyl]‐amino‐phen‐4‐yl)‐carbazole, 2,5‐bis(4‐bromo‐phenyl)‐[1, 3,4]oxadiazole, and 4,7‐dibromo‐benzo[1,2,5]thiadiazole. Both the carbazole homopolymer and alternating copolymer with 2,5‐diphenyl‐[1,3,4]oxadiazole were found as wideband gap materials emitting in the blue part of the electromagnetic spectrum while the carbazole alternating copolymer with 4,7‐benzo[1,2,5]thiadiazole had a narrower band gap and emitted in the orange part of the electromagnetic spectrum. The new polymers are thermally stable up to 300 °C. A discussion of the electrochemical and optical properties of the new polymers is presented. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5957–5967, 2007.  相似文献   

8.
The synthesis, one‐ and two‐photon absorption (TPA) and emission properties of two novel 2,6‐anthracenevinylene‐based copolymers, poly[9,10‐bis(3,4‐bis(2‐ethylhexyloxy)phenyl)‐2,6‐anthracenevinylene‐alt‐N‐octyl‐3,6‐carbazolevinyl‐ene] ( P1 ) and poly[9,10‐bis(3,4‐bis(2‐ethylhexyloxy)phenyl)‐2,6‐anthracenevinyl‐ene‐alt‐N‐octyl‐2,7‐carbazolevinylene] ( P2 ) were reported. The as‐synthesized polymers have the number‐average molecular weights of 1.56 × 104 for P1 and 1.85 × 104 g mol?1 for P2 and are readily soluble in common organic solvents. They emit strong bluish‐green one‐ and two‐photon excitation fluorescence in dilute toluene solution (? P1 = 0.85, ? P2 = 0.78, λem( P1 ) = 491 nm, λem( P2 ) = 483 nm). The maximal TPA cross‐sections of P1 and P2 measured by the two‐photon‐induced fluorescence method using femtosecond laser pulses in toluene are 840 and 490 GM per repeating unit, respectively, which are obviously larger than that (210 GM) of poly[9,10‐bis‐(3,4‐bis(2‐ethylhexyloxy) phenyl)‐2,6‐anthracenevinylene], indicating that the poly(2,6‐anthracenevinylene) derivatives with large TPA cross‐sections can be obtained by inserting electron‐donating moieties into the polymer backbone. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 463–470, 2010  相似文献   

9.
Irradiation of phenyl iodonium bis(perfluoroalkanesulphonyl)methide in DMSO yieldsan 1:1 adduct, DMSO·PhI=C(SO_2R_F)_2 (2) which was confirmed by X-ray crystal structure analysis.  相似文献   

10.
The syntheses of [bis(3,5-di-tert-butyl-2-hydroxy-2-phenyl)amine]diphenyltin (1) and [bis(3,5-di-tert-butyl-2-hydroxy-2-phenyl)amine]dichloro-phenyl-stannate (2) by template reactions using 3,5-di-tert-butylcatechol, aqueous ammonia and SnPh2Cl2 are reported. We also report the syntheses of compounds 2, [bis(3,5-di-tert-butyl-2-hydroxy-2-phenyl)amine]trichloro-stannate (4), [bis(3,5-di-tert-butyl-2-hydroxy-2-phenyl)methylamine]chloro-methyltin (5), and [bis(3,5-di-tert-butyl-2-hydroxy-2-phenyl)-n-butylamine]n-butyl-chlorotin (6) and [bis(3,5-di-tert-butyl-2-hydroxy-2-phenyl)amine]n-butyl-dichloro-stannate (7), performed by transmetallation reactions of the octahedral zinc coordination compound Zn[3,5-di-tert-butyl-1,2-quinone-(3,5-di-tert-butyl-2-hydroxy-1-phenyl)imine]2 (3) with SnPhCl3 or SnPh2Cl2, SnCl4, SnMe2Cl2, Sn(nBu)2Cl2 and Sn(nBu)Cl3, respectively. The X-ray diffraction structures of compounds 1, 2, 4 and 6 are reported. The transmetallation reactions with Sn(alkyl)2Cl2 afforded pentacoordinated tin compounds, where an alkyl group migrated from tin to nitrogen, while similar reactions with Sn-Ph compounds did not present any phenyl group migration.  相似文献   

11.
Five mono‐nuclear silver (I) complexes with 6,7‐dicyanodipyridoquinoxaline ligand, namely {[Ag(DPEphos)(dicnq)]NO3}2 · CH3OH ( 1 ), [Ag(DPEphos)(dicnq)]BF4 · CH3OH ( 2 ), [Ag(XANTphos)(dicnq)]CF3SO3 ( 3 ), {[Ag(XANTphos)(dicnq)]NO3}2 ( 4 ), and [Ag(XANTphos)(dicnq)]ClO4 · CH2Cl2 ( 5 ) {DPEphos = bis[2‐(diphenylphosphanyl)phenyl]ether, dicnq = 6,7‐dicyanodipyridoquinoxaline, XANTphos = 9,9‐dimethyl‐4,5‐bis(diphenylphosphanyl)xanthene} were characterized by X‐ray diffraction, IR, 1H NMR, 31P NMR, fluorescence spectra, and terahertz time‐domain spectra (THz‐TDS). In the five complexes the AgI, which is coordinated by two kinds of chelating ligands, adopts four‐coordinate modes to generate mono‐nuclear structures. The C–H ··· π interactions lead to formation of a 1D infinite chain for complexes 2 and 3 . The crystal packing of complexes 1 and 5 reveal that they form 3D supermolecular network by several pairs of C–H ··· π interactions. The emissions of these complexes are attributed to ligands‐centered [π–π*] transition based on both of the P‐donor and N‐donor ligands.  相似文献   

12.
Interpenetrating and semi-interpenetrating polymer networks are synthesized with the use of cationic and anionic ionic monomers: N-[3-(methacryloyloxy)propyl]-N-methylpyrrolidinium bis(trifluoromethane-sulfonyl)imide, N-[2-(2-(2-(methacryloyloxy)ethoxy)ethoxy)ethyl]-N-methylpyrrolidinium bis(fluorosulfonyl)imide, and (N-butyl-N-methylpyrrolidinium 1-[3-(methacryloyloxy)propylsulfonyl] (trifluoromethanesulfonyl) imide. Their ionic conductivities, electrochemical stabilities, heat resistances, thermal stabilities, and mechanical properties and the swelling of the films in ionic liquid/lithium salt mixtures were studied. The copolymerization of N-[2-(2-(2-(methacryloyloxy)ethoxy)ethoxy)ethyl]-N-methylpyrrolidinium bis(fluorosulfonyl)imide and poly(ethylene glycol dimethacrylate) and poly(ethylene glycol methacrylate) in the presence of butadiene-acrylonitrile rubber and a solution of Li(CF3SO2)2N in N-(methoxymethyl)-N-methylpyrrolidinium bis(fluorosulfonyl)imide yielded a solid-state electrolyte with a set of properties optimum among the studied films: an ionic conductivity of 1.3 × 10?4S/cm (25°C), a tensile strength of 80 kPa, and an elongation at break of 60%.  相似文献   

13.
Two new low‐bandgap alternating copolymers (CEHTF and CEHTP) consisting of 4,6‐bis(3′‐(2‐ethylhexyl)thien‐2′‐yl)thieno[3,4‐c][1,2,5] thiadiazole and 9,9‐bis(2‐ethylhexyl)fluorene or 2,5‐bis(isopentyloxy)benzene were synthesized by Suzuki coupling reaction of corresponding comonomers. Their optical, electrochemical, and photovoltaic (PV) properties were studied and are reported. Both the copolymers exhibited long‐wavelength absorption covering the whole visible spectral region, which is in CEHTP thin films extended up to near infrared region, ambipolar redox properties, and electrochromism. High‐electron affinities and low‐optical bandgap values, 1.37 and 1.15 eV, were determined for CEHTF and CEHTP, respectively. PV devices with bulk heterojunction made of blends of copolymers and fullerene derivative [6,6]‐phenyl‐C61‐butyric acid methyl ester ([60]PCBM) were prepared and characterized. Effects of intramolecular charge transfer strength and side‐chain nature and length on photophysical properties are discussed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
Two donor/acceptor (D/A)‐based benzo[1,2‐b:4,5‐b′]dithiophene‐alt‐2,3‐biphenyl quinoxaline copolymers of P 1 and P 2 were synthesized pending different functional groups (thiophene or triphenylamine) in the 4‐positions of phenyl rings. Their thermal, photophysical, electrochemical, and photovoltaic properties, as well as morphology of their blending films were investigated. The poly(4,8‐bis((2‐ethyl‐hexyl)oxy)benzo[1,2‐b:4,5‐b'] dithiophene)‐alt‐(2,3‐bis(4′‐bis(N,N‐bis(4‐(octyloxy) phenylamino)‐ 1,1′‐biphen‐4‐yl)quinoxaline) ( P 2) exhibited better photovoltaic performance than poly(4,8‐bis((2‐ethylhexyl)oxy)benzo[1,2‐b:4,5‐b'] dithiophene)‐alt‐(2,3‐bis(4‐(5‐octylthiophen‐2‐yl)phenyl)quinoxaline) ( P 1) in the bulk‐heterojunction polymer solar cells with a configuration of ITO/PEDOT:PSS/polymers: [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM)/LiF/Al. A power conversion efficiency of 3.43%, an open‐circuit voltage of 0.80 V, and a short‐circuit current of 9.20 mA cm?2 were achieved in the P 2‐based cell under the illumination of AM 1.5, 100 mW cm?2. Importantly, this power conversion efficiency level is 2.29 times higher than that in the P 1‐based cell. Our work indicated that incorporating triphenylamine pendant in the D/A‐based polymers can greatly improved the photovoltaic properties for its resulting polymers.  相似文献   

15.
The crystal structures of sodium 4‐({4‐[N,N‐bis(2‐hydroxy­ethyl)­amino]­phenyl}diazenyl)­benzoate 3.5‐hydrate, Na+·C17H18N3O4?·3.5H2O, (I), and potassium 4‐({4‐[N,N‐bis(2‐hydroxy­ethyl)­amino]­phenyl}diazenyl)­benzoate dihydrate, K+·C17H18N3O4?·2H2O, (II), are described. The results indicate an octahedral coordination around sodium in (I) and a trigonal prismatic coordination around potassium in (II). In both cases, coordination around the metal cation is achieved through O atoms of the water mol­ecules and hydroxy groups of the chromophore. The organic conjugated part of the chromophore is approximately planar in (I), while a dihedral angle of 30.7 (2)° between the planes of the phenyl rings is observed in (II).  相似文献   

16.
Syntheses, Single-Crystal X-Ray Analyses and Solid-State 29Si NMR Studies of a Zwitterionic λ5-Spirosilicate and a Cage-like Octa(silasesquioxane) The zwitterionic λ5-spirosilicate bis[2,3-naphthalenediolato(2 ?)][2-(dimethylammonio)phenyl]silicate ( 1 ; isolated as 1 · 1/2 CH3CN) was synthesized by reaction of the [2-(dimethylamino)phenyl]dimethoxyorganosilanes 5, 6 and 7 [2-(Me2N)C6H4Si(OMe)2R: R = Ph ( 5 ), cyclo? C6H11 ( 6 ), Me ( 7 )] with 2,3-dihydroxynaphthalene in acetonitrile at room temperature. Reaction of 1 · 1/2 CH3CN or [2-(dimethylamino)phenyl]trimethoxysilane ( 3 ) with water in acetonitrile yielded the cage-like octa{[2-(dimethylamino)phenyl]silasesquioxane} ( 2 ). The crystal structures of 1 · 1/2 CH3CN and 2 were studied by X-ray diffraction. In addition, 1 · 1/2 CH3CN and 2 were characterized by solid-state (29Si CP/MAS) and solution NMR studies (1H, 13C, 29Si).  相似文献   

17.
Three classes of quinoxaline (Qx)‐based donor–acceptor (D–A)‐type copolymers, poly[thiophene‐2,5‐diyl‐alt‐2,3‐bis(4‐(octyloxy)phenyl‐quinoxaline‐5,8‐diyl] P(T‐Qx), poly{4,8‐bis(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl‐alt‐2,3‐bis(4‐(octyloxy)phenyl‐quinoxaline‐5,8‐diy} P(BDT‐Qx), and poly{4,8‐bis(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl‐alt‐(5′,8′‐di‐2‐thienyl‐2,3‐bis(4‐octyloxyl)phenyl)‐quinoxaline‐5,5‐diyl} P(BDT‐DTQx), were synthesized via a Stille coupling reaction. The Qx unit was functionalized at the 2‐ and 3‐positions with 4‐(octyloxy)phenyl to provide good solubility and to reduce the steric hindrance. The absorption spectra of the Qx‐containing copolymers could be tuned by incorporating three different electron‐donating moieties. Among these, P(T‐Qx) acted as an electron donor and yielded a high‐performance solar cell by assuming a rigid planar structure, confirmed by differential scanning calorimetry, UV–vis spectrophotometer, and density functional theory study. In contrast, the P(BDT‐Qx)‐based solar cell displayed a lower power conversion efficiency (PCE) with a large torsional angle (34.7°) between the BDT and Qx units. The BDT unit in the P(BDT‐DTQx) backbone acted as a linker and interfered with the formation of charge complexes or quinoidal electronic conformations in a polymer chain. The PCEs of the polymer solar cells based on these copolymers, in combination with [6,6]‐phenyl C70 butyric acid methyl ester (PC71BM), were 3.3% [P(T‐Qx)], 1.9% [P(BDT‐Qx)], and 2.3% [P(BDT‐DTQx)], respectively, under AM 1.5G illumination (100 mW cm?2). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

18.
A novel family of four 1‐bromo‐2,6‐bis{[(λ5‐phosphanylidene)imino]methyl}benzene ligands has been synthesized and characterized. The phosphiniminomethyl substituents are decorated with either three phenyl groups, two phenyl and one cyclohexyl group, one phenyl and two cyclohexyl groups, or three cyclohexyl groups. Each ligand was metallated using zero‐valent nickel through an oxidative addition to form a family of organonickel(II) complexes, namely (2,6‐bis{[(triphenyl‐λ5‐phosphanylidene)imino]methyl}phenyl‐κ3N,C1,N′)bromidonickel(II) dichloromethane hemisolvate, [NiBr(C44H37N2P2)]·0.5CH2Cl2, (2,6‐bis{[(cyclohexyldiphenyl‐λ5‐phosphanylidene)imino]methyl}phenyl‐κ3N,C1,N′)bromidonickel(II) diethyl ether hemisolvate, [NiBr(C44H49N2P2)]·0.5C4H10O, (2,6‐bis{[(dicyclohexylphenyl‐λ5‐phosphanylidene)imino]methyl}phenyl‐κ3N,C1,N′)bromidonickel(II), [NiBr(C44H61N2P2)], and (2,6‐bis{[(tricyclohexyl‐λ5‐phosphanylidene)imino]methyl}phenyl‐κ3N,C1,N′)bromidonickel(II), [NiBr(C44H73N2P2)]. This family of complexes represents a useful opportunity to investigate the impact of incrementally changing the steric characteristics of a complex on its structure and reactivity.  相似文献   

19.
The nickel complexes {bis[N,N′-di(2-t-butylphenyl)imino]acenaphthene} dibromonickel (1-NiBr2) and {bis[N,N′-di(2-phenylphenyl)imino]acenaphthene} dibromonickel (2-NiBr2) were studied in homo-, co- and terpolymerization of ethylene and propylene with polar monomers and the results compared to those previously obtained with another catalyst precursor [bis(N,N′-dimesitylimino)acenaphthene] dibromonickel (3-NiBr2). In order to understand the effect of the ligand in the activity and rate of comonomer incorporation some theoretical studies, using both a semi-empirical molecular orbital method and a density-functional theory model, were performed. Good agreement was found between the computed parameters and the experimental results for the order of homo-polymerization, the differences in polymer molecular weight distribution, and, in some cases, the incorporation of functionalized copolymers in the case of copolymerization, and also on the inhibition effects caused by these copolymers.  相似文献   

20.
Five mono‐nuclear silver(I) complexes with the ligand 2,9‐dimethyl‐1,10‐phenanthroline, namely [Ag(DPEphos)(dmp)]BF4 ( 1 ), [Ag(DPEphos)(dmp)]CF3SO3 ( 2 ), [Ag(DPEphos)(dmp)]ClO4 ( 3 ), [Ag(DPEphos)(dmp)]NO3 ( 4 ), and [Ag(dppb)(dmp)]NO3 · CH3OH ( 5 ) {DPEphos = bis[2‐(diphenylphosphanyl)phenyl]ether, dppb = 1,2‐bis(diphenylphosphanyl)benzene, dmp = 2,9‐dimethyl‐1,10‐phenanthroline} were characterized by X‐ray diffraction, IR, 1H NMR, 31P NMR and fluorescence spectroscopy. Their terahertz (THz) time‐domain spectra were also studied. In these complexes the silver(I), which is coordinated by two kinds of chelating ligands, adopts four‐coordinate modes to generate mono‐nuclear structures. In complexes 1 , 3 – 5 , offset π ··· π weak interactions exist between the neighboring benzene rings. In the 31P NMR spectra, there exist splitting signals (dd), which can be attributed to the coupling of the 107,109Ag–31P. All the emission peaks of these complexes are attributed to ligand‐centered excited states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号