首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The frequency shift and frequency shift image of cantilever in AFM have been studied by numerical integration of the equation of motion of cantilever for silicon tip with rutile TiO2(0 0 1) surface in UHV conditions and by the Hamaker summation method for the tip-surface interaction forces. The effects of the excitation frequency at the cantilever base and the equilibrium position of the tip on the frequency shift have been calculated and the results showed the same phenomena as those measured, e.g., the frequency shift increased dramatically or rapidly before the contact point and was then almost level off after the contact point. The effects of scanning speed and the initial closest distance of tip to the contact point have been calculated at different excitation frequencies at the cantilever base and the results showed that proper frequency shift image could be obtained either by noncontact mode at the excitation frequency slightly less than the resonance frequency of free cantilever, or by tapping mode at the excitation frequency a few times smaller than the resonance frequency of free cantilever.  相似文献   

2.
Field-induced transfer of Li atoms from a [110]-oriented W tip to a Pt sample is realized in the scanning tunneling microscope (STM) under UHV conditions, using a working principle of the new solid state Li surface diffusion metal ion source (Li-SDMIS), in which the supply of Li to the apex of the tip occurs via surface diffusion. By applying 5–10 μs voltage pulses to the Li-covered W tip placed within tunneling range, single Li hillocks (400 × 400 Å2) were formed on the chosen area of the Pt(110) sample in a well-rep way. The pulse magnitude necessary for Li emission displays a distinct threshold character. A comparative analysis of the energetics of Li field desorption in the STM and Li-FDM (lithium field desorption microscope) modes indicates chemically-assisted field desorption of Li as the field-induced transfer mechanism.  相似文献   

3.
Mo, Ta, W, and Re field electron microscope (FEM) tips, bombarded with microparticles at limited field emission currents (400 MΩ resistor in series with the FEM tip) were investigated by means of FEM, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Two groups of tips could be distinguished: One group had a slight tip radius increase to a maximum of 2.5 μm and microcraters were formed along the tip shank. The other group had no detectable tip radius change; however, there was microcrater formation near the tip apex area. FEM patterns showed surface contamination clearly. Heating such contaminated tips and tips where phosphorescent material (Zn:Cd)S had been deposited in less than monolayer concentration by evaporation from a heating coil, resulted in similar sequences of FEM patterns. A new type of microcrater with smooth crater lips could be detected in both groups. These results support the combined microparticle-field emission mechanism [1], which was proposed earlier to be responsible for melting cap and microcrater formation. Excerpts were presented at the 19th Field Emission Symposium, Urbana, Illinois (USA), August 1972.  相似文献   

4.
We have successfully and reproducibly fabricated uniform indium (In) nano-dots at a selected point. Nano-dot formation was realized using an atomic force microscope (AFM) probe with a specially designed cantilever, which was equipped with a hollow pyramidal tip with a sub-micron size aperture on the apex and an In-reservoir tank within the stylus. The In nano-dots formed in this study can be directly converted to InAs quantum dots by subsequent irradiation of arsenic flux in the molecular beam epitaxy chamber, which is connected to the AFM chamber through an ultra-high-vacuum tunnel.  相似文献   

5.
6.
Water-solid interfaces play important roles across a broad range of scientific and application fields. In the past decades, atomic force microscopy (AFM) has significantly deepened our understanding of water-solid interfaces at molecular scale. In this review, we describe the recent progresses on probing water-solid interfaces by noncontact AFM, highlighting the imaging of interfacial water with ultrahigh spatial resolution. In particular, the recent development of qPlus-based AFM with functionalized tips has made it possible to directly image the H-bonding skeleton of interfacial water under UHV environment. Based on high-order electrostatic forces, such a technique even enables submolecular-level imaging of weakly bonded water structures with negligible disturbance. In addition, the three-dimensional (3D) AFM using low-noise cantilever deflection sensors can achieve atomic resolution imaging at liquid/solid interfaces, which opens up the possibility of probing the hydration layer structures under realistic conditions. We then discuss the application of those AFM techniques to various interfacial water systems, including water clusters, ion hydrates, water chains, water monolayers/multilayers and bulk water/ice on different surfaces under UHV or ambient environments. Some important issues will be addressed, including the H-bonding topology, ice nucleation and growth, ion hydration and transport, dielectric properties of water, etc. In the end, we present an outlook on the directions of future AFM studies of water at interfaces and the challenges faced by this field, as well as the development of new AFM techniques.  相似文献   

7.
《Surface science》1992,262(3):L111-L117
High spatial resolution Auger electron spectra and scanning Auger microscope (SAM) images of supported metal catalysts have been obtained in a UHV scanning transmission electron microscope. Ag/α-Al2O3 was used as a model catalyst system, where silver was evaporated, in situ, onto polycrystalline alumina carriers. Silver particles, as small as 2 nm in diameter, were clearly revealed in SAM images with high contrast. On large islands, an edge resolution < 3 nm was achieved. Information about surface and bulk properties of supported catalysts can be extracted from images formed with different signals generated from the same area which are obtained simultaneously.  相似文献   

8.
Intense multiphoton electron emission is observed from sharp (approximately 20 nm radius) metallic tips illuminated with weak 100-pJ, 7-fs light pulses. Local field enhancement, evidenced by concurrent nonlinear light generation, confines the emission to the tip apex. Electrons are emitted from a highly excited nonequilibrium carrier distribution, resulting in a marked change of the absolute electron flux and its dependence on optical power with the tip bias voltage. The strong optical nonlinearity of the electron emission allows us to image the local optical field near a metallic nanostructure with a spatial resolution of a few tens of nanometers in a novel tip-enhanced electron emission microscope.  相似文献   

9.
The possibility of mechanical detection of Casimir friction with the use of a noncontact atomic force microscope is discussed. A SiO2 probe tip located above a graphene-coated SiO2 substrate is subjected to the frictional force caused by a fluctuating electromagnetic field produced by a current in graphene. This frictional force will create the bend of a cantilever, which can be measured by a modern noncontact atomic force microscope. Both the quantum and thermal contributions to the Casimir frictional force can be measured using this experimental setup. This result can also be used to mechanically detect Casimir friction in micro- and nanoelectromechanical systems.  相似文献   

10.
The effect of an external bias voltage and spatial variations of the surface potential on the damping of cantilever vibrations in an atomic force microscope (AFM) is considered. The damping is due to an electrostatic friction that arises due to dissipation of the energy of an electromagnetic field generated in the sample by oscillating static charges induced on the surface of the AFM probe tip by the bias voltage or spatial variations of the surface potential. A similar effect appears when the tip is oscillating in an electrostatic field created by charged defects present in the dielectric sample. The electrostatic friction is compared to the van der Waals (vdW) friction between closely spaced bodies, which is caused by a fluctuating electromagnetic field related to the quantum and thermal fluctuations of current density inside the bodies. It is shown that the electrostatic friction and the vdW friction can be strongly enhanced in the presence of dielectric films or two-dimensional (2D) structures—such as a 2D electron system or an incommensurate layer of adsorbed ions exhibiting acoustic oscillations—on the probe tip and sample surfaces. It is also shown that the damping of cantilever oscillations caused by the electrostatic friction in the presence of such 2D structures can have the same order of magnitude and the same dependence on the distance as observed in experiment by Stipe et al. [Phys. Rev. Lett. 87, 096801 (2001)]. At small distances, the vdW friction can be large enough to be measured in experiment. In interpreting the experimental data that obey a quadratic dependence on the bias voltage, one can reject a phonon mechanism according to which the friction depends on the fourth power of the voltage.  相似文献   

11.
The effect of tip mass on the frequency response and sensitivity of atomic force microscope (AFM) cantilever in the liquid environment is investigated. For this purpose, using Euler–Bernoulli beam theory and considering tip mass and hydrodynamic functions in a liquid environment, an expression for the resonance frequencies of AFM cantilever in liquid is derived. Then, based on this expression, the effect of the surface contact stiffness on the flexural mode of a rectangular AFM cantilever in fluid is investigated and compared with the case where the AFM cantilever operates in the air. The results show that in contrast with an air environment, the tip mass has no significant impact on the resonance frequency and sensitivity of the AFM cantilever in the liquid. Hence, analysis of AFM behaviour in liquid environment by neglecting the tip mass is logical.  相似文献   

12.
After deposition of aluminum oxide on a tungsten field emission microscope (FEM) tip and stepwise heating, three stages of emission changes were observed on {100}. Stages I and II cause work function decreases of 0.28 and 0.07 eV, respectively. Stage III is characterized by a large increase (Δ??+3 eV). The changes are discussed in terms of interaction of decomposition products (oxygen and aluminum) and adsorption of aluminum oxide. On {110} only a single aluminum oxide layer growth, which results in a work function decrease to ?=4.69 eV, is observed. The field electron emission from this layer was measured between 1400°K and room temperature. The experimental values were compared with those determined from Christov's unified theory of field and thermionic emission. The {110} layer values coincide with those obtained earlier from an aluminum oxide covered tungsten {112}.  相似文献   

13.
The electronic properties of SrTiO3(100) surfaces after various treatments have been studied by electron energy loss spectroscopy and Auger electron spectroscopy. A stoichiometric surface without contamination can be obtained by annealing at 910 K under oxygen atmosphere of 5 × 10−5 Pa. The surface heated under ultrahigh vacuum (UHV) at 910 K exhibits a new surface state in the band gap region, which comes from oxygen vacancies at the top Ti-O2 layer. This state is also produced by electron irradiation or Ar-ion bombardment.  相似文献   

14.
"运用电子束诱导沉积技术在钨针尖表面沉积钨纳米线.在透射电子显微镜中,原位测量单根纳米线的电阻与场发射特性,并观察其显微结构变化.样品台为特制的电性能测试样品台,包括步进电机和压电陶瓷驱动的装置.导电铜片作为与纳米线相对的另一极.自行设计制作锁相放大器电路测量纳米线的电阻.结果表明,纳米线的电阻为0.1*10-3 -m量级.纳米线头部的几何缺陷将影响其场发射特性.纳安级电流将改变纳米线头部的几何结构与微观结构.场发射开启电压比结构变化前低11 V左右."  相似文献   

15.
单颗粒CVD金刚石的场发射   总被引:1,自引:0,他引:1       下载免费PDF全文
元光  郭大勃  顾长志  窦艳  宋航 《物理学报》2007,56(1):143-146
利用改造的扫描电子显微镜(SEM)设备,在SEM腔体中利用钨(W)探针测试了单颗粒金刚石的I-V与场发射特性,结果表明结晶良好的金刚石的I-V特性服从欧姆定律,而孤立的菜花状金刚石颗粒(cauliflower-like diamond)的I-V特性基本符合Pool-Frenkel输运特性.场发射特性表明,结晶良好的金刚石薄膜基本没有场发射,而孤立的菜花状的金刚石颗粒具有一定的场发射.CVD金刚石的场发射过程中,缺陷对电子的输运起主导作用.  相似文献   

16.
Force interaction between an orbital of a dangling bond out of a Si tip apex and an occupied lone-pair orbital on a Si(111)2ǵ-Sb surface is experimentally investigated to clarify the imaging mechanism of noncontact AFM. Sb adatoms with occupied lone-pair orbitals are clearly observed on the 2ǵ zigzag chain structure surface. The discontinuity in the frequency-shift curve is not observed at the Sb sites. Possible contrast mechanisms are discussed and the most understandable in terms of the chemical bonding interaction weaken by the existence of the anti-bonding orbital with one electron.  相似文献   

17.
A near-field scanning microwave microscope (NSMM) incorporating an atomic force microscope (AFM) probe tip was used for the direct imaging of magnetic domains of a hard disk under an external magnetic field. We directly imaged the magnetic domain changes by measuring the change of reflection coefficient S11 of the NSMM at an operating frequency near 4.4 GHz. Comparison was made to the magnetic force microscope (MFM) image. Using the AFM probe tip coupled to the tuning fork distance control system enabled nano-spatial resolution. The NSMM incorporating an AFM tip offers a reliable means for quantitative measurement of magnetic domains with nano-scale resolution and high sensitivity.  相似文献   

18.
Aluminum oxide deposited on a clean rhenium field emission microscope tip at room temperature starts to migrate on the metal surface at about 600° C. Various face specific layer formations occur above this temperature. They either increase or decrease the local electron emission. Complete desorption of the aluminum oxide is obtained at about 1350°C. The remaining oxygen can be removed by heating at 1900°C. Average work function changes are discussed together with the corresponding FEM patterns of the various adsorption stages. Comparisons are made with the adsorption system aluminum oxide on tungsten.  相似文献   

19.
Light emission induced by scanning tunneling microscope on gold islands grown on MoS2 surfaces has been investigated. Surface geometry and roughness show that different apexes of the same tip can modify the energy of photons emitted in the tunneling junction. Comparisons of topography and photon map are used to locate islands imaged twice and to represent approximately the tip shape used. Light emission spectroscopy on the same island with two apexes of the multiple tip reveals variations of emission properties according to the apex used, showing the importance of tip geometry in the emission process induced by tip induced plasmon modes.  相似文献   

20.
A carbon nanotube (CNT) tip, which assembled on the sharp end of a Si tip by dielectrophoresis, was structurally modified using focused ion beam (FIB). We described the imaging characterization of the FIB-modified CNT tip in noncontact AFM mode in terms of wear, deep trench accessibility, and imaging resolution. Compared to a conventional Si tip, the FIB-modified CNT tip was superior, especially for prolonged scanning over 10 h. We conclude that modified CNT tips have the potential to obtain high-quality images of nanoscale structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号