首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the experimental realization of a hybrid quantum circuit combining a superconducting qubit and an ensemble of electronic spins. The qubit, of the transmon type, is coherently coupled to the spin ensemble consisting of nitrogen-vacancy centers in a diamond crystal via a frequency-tunable superconducting resonator acting as a quantum bus. Using this circuit, we prepare a superposition of the qubit states that we store into collective excitations of the spin ensemble and retrieve back into the qubit later on. These results constitute a proof of concept of spin-ensemble based quantum memory for superconducting qubits.  相似文献   

2.
We have realized a tunable coupling over a large frequency range between an asymmetric Cooper pair transistor (charge qubit) and a dc SQUID (phase qubit). Our circuit enables the independent manipulation of the quantum states of each qubit as well as their entanglement. The measurement of the charge qubit's quantum states is performed by an adiabatic quantum transfer from the charge to the phase qubit. The measured coupling strength is in agreement with an analytic theory including a capacitive and a tunable Josephson coupling between the two qubits.  相似文献   

3.
A novel N-spiral resonator with open-loop secondary coupling structure(OLSCS) is proposed to realize a compact ultra-narrowband high temperature superconducting(HTS) filter. The coupling strength and polarity between the resonators can be significantly reduced and changed by introducing OLSCS, thus the required weak coupling can be achieved in a very compact size. A six-pole superconducting filter at 1701 MHz with a fractional bandwidth of 0.19% is designed to validate this method. The filter is fabricated on Mg O substrate with a compact size of 15 mm × 10 mm. The measured insertion loss is 0.79 d B, and the return loss is better than 17.4 d B. The experimental results show a good agreement with the simulations.  相似文献   

4.
制备了基于超导铝膜的四分之一波长反射型共面波导谐振器,并利用矢量网络分析仪测量了该谐振器在低温超导状态下的传输特性。实验结果表明:对于拥有较大耦合电容的超导共面波导谐振器,在超导状态下随着环境温度的升高,超导薄膜的表面阻抗会增大,进而谐振器的中心谐振频率降低,谐振峰变宽。温度越高,谐振频率随温度升高而向低频偏移的速率越快。另一方面,随着环境温度升高,谐振器的外部耦合品质因数和负载品质因数也都会降低。温度越高,谐振器品质因数随温度升高而降低的速率越快。用二能级理论解释了实验现象,品质因数理论计算值与实验测量结果相接近。  相似文献   

5.
The proposed high current injector for the superconducting Linac at the Inter-University Accelerator Centre will have several accelerating structures, including a superconducting module which will contain low beta niobium resonators. A prototype resonator for the low beta module has been designed. The resonator has been carefully modelled to optimize the electromagnetic parameters. In order to validate them, a room-temperature copper model has been built and tested. In this paper we present details of the electromagnetic design of the low beta resonator, briefly discuss the mechanical and engineering design, and present results from the measurements on the room-temperature copper model.  相似文献   

6.
We investigate a hybrid quantum system where an individual electronic spin qubit (EQ) and a transmission line resonator (TLR) are connected by a nanomechanical resonator (NAMR). We analyze the possibility of realizing a strong coupling between the EQ and the TLR. Compared with a direct coupling between an EQ and a TLR, the achieved coupling can be stronger and controllable. The proposal might be used to implement a high-fidelity quantum state transfer between the spin qubit and the TLR, and is scalable to involve several individual EQ-NAMR coupled systems with a TLR.  相似文献   

7.
We investigate the non-Markovian effects on the entanglement transfer to the distant non-interacting atom qubits,which are embedded in a coupled superconducting resonator. The master equation governing the dynamics of the system is derived by the non-Markovian quantum state diffusion(NMQSD) method. Based on the solution, we show that the memory effect of the environment can lead to higher entanglement revival and make the entanglement last for a longer time. That is to say, the non-Markovian environment can enhance the entanglement transfer. It is also found that the maximum entanglement transferred to distant atoms can be modified by appropriately selecting the frequency of the modulated intercavity coupling. Moreover, with the initial anti-correlated state, the entanglement between the cavity fields can be almost completely transferred to the separated atoms. Lastly, we show that the memory effect has a significant impact on the generation of entanglement from the initial non-entangled states.  相似文献   

8.
This paper proposes a simple scheme for realizing one-qubit and two-qubit quantum gates as well as multiqubit entanglement based on dc-SQUID charge qubits through the control of their coupling to a 1D transmission line resonator (TLR). The TLR behaves effectively as a quantum data-bus mode of a harmonic oscillator, which has several practical advantages including strong coupling strength, reproducibility, immunity to 1/f noise, and suppressed spontaneous emission. In this protocol, the data-bus does not need to stay adiabatically in its ground state, which results in not only fast quantum operation, but also high-fidelity quantum information processing. Also, it elaborates the transfer process with the 1D transmission line.  相似文献   

9.
We observe a sharp threshold for dynamic phase locking in a high-Q transmission line resonator embedded with a Josephson tunnel junction, and driven with a purely ac, chirped microwave signal. When the drive amplitude is below a critical value, which depends on the chirp rate and is sensitive to the junction critical current I0, the resonator is only excited near its linear resonance frequency. For a larger amplitude, the resonator phase locks to the chirped drive and its amplitude grows until a deterministic maximum is reached. Near threshold, the oscillator evolves smoothly in one of two diverging trajectories, providing a way to discriminate small changes in I0 with a nonswitching detector, with potential applications in quantum state measurement.  相似文献   

10.
We demonstrate the realization of a hybrid solid-state quantum device, in which a semiconductor double quantum dot is dipole coupled to the microwave field of a superconducting coplanar waveguide resonator. The double dot charge stability diagram extracted from measurements of the amplitude and phase of a microwave tone transmitted through the resonator is in good agreement with that obtained from transport measurements. Both the observed frequency shift and linewidth broadening of the resonator are explained considering the double dot as a charge qubit coupled with a strength of several tens of MHz to the resonator.  相似文献   

11.
《中国物理 B》2021,30(9):90506-090506
We investigate the properties of a generalized Rabi model by replacing the two-level atom in Rabi model with a ferromagnetic Heisenberg spin chain. We find that the dynamical behavior of the system can be divided into four categories.The energy spectrum of the ground state and some low excited states are obtained. When the magnons and the photon are in resonance, the model is exactly solvable and the rigorous solution is obtained. Near the resonance point where the detuning is small, the system is studied with the help of perturbation theory. This model has a spontaneously breaking of parity symmetry, suggesting the existence of a quantum phase transition. The critical exponent from the normal phase is computed.  相似文献   

12.
We theoretically study the thermoelectric transport properties through a triple quantum dots (QDs) device with the central QD coupled to a ferromagnetic lead, a superconducting one, and two side QDs with spin-dependent interdot tunneling coupling. The thermoelectric coefficients are calculated in the linear response regime by means of nonequilibrium Green's function method. The thermopower is determined by the single-electron tunneling processes at the edge of superconducting gap. Near the outside of the gap edge the thermopower is enhanced while thermal conductance is suppressed, as a result, the charge figure of merit can be greatly improved as the gap appropriately increases. In the same way, charge figure of merit also can be greatly improved near the outside of the gap edge by adjusting interdot tunneling coupling and asymmetry coupling of the side QDs to central QD. Moreover, the appropriate increase of the interdot tunneling splitting and spin polarization of ferromagnetic lead not only can improve charge thermopower and charge figure of merit, but also can enhance spin thermopower and spin figure of merit. Especially, the interdot tunneling splitting scheme provides a method of controlling charge (spin) figure merit by external magnetic field.  相似文献   

13.
A superconducting quarter-wave resonator (QWR) of frequency=162.5 MHz and β=0.085 (β =v/c) has been designed at Peking University. The multipacting (MP) simulation and analysis for the QWR with CST Particle Studio has been performed. The simulation results reveal that there is no sign of MP with its normal operating accelerating gradients in the range of 6-8 MV/m. The accelerating gradient range that may incur MP is from about 1.4 to 3.2 MV/m, and the places where MP may be encountered are mainly located at the top part of the QWR. So the effect of different top geometries on MP has also been studied in depth. Our results show that an inward convex round roof is better than other round roofs, and plane roofs have an advantage over round roofs on the suppression of MP in general. While considering the optimization of its electromagnetic (EM) design, our initial designed model is also acceptable.  相似文献   

14.
Modified Eliashberg equations are derived to describe the spin exchange scattering from paramagnetic impurities. The electron-impurity scattering is described by theT-matrix element first derived by Rusinov and all scattering modes are allowed. For a Pb–Mn alloy the electronic density of statesN()/N(0) and the tunneling conductanceg(V) are calculated and compared with experimental data. Experimental data and theoretical predictions are found to agree very satisfying.Research supported by Fonds zur Förderung der wissenschaftlichen Forschung, project number: 4440  相似文献   

15.
We report on measurements of the spin lifetime of nuclear spins strongly coupled to a micromechanical cantilever as used in magnetic resonance force microscopy. We find that the rotating-frame correlation time of the statistical nuclear polarization is set by the magnetomechanical noise originating from the thermal motion of the cantilever. Evidence is based on the effect of three parameters: (1) the magnetic field gradient (the coupling strength), (2) the Rabi frequency of the spins (the transition energy), and (3) the temperature of the low-frequency mechanical modes. Experimental results are compared to relaxation rates calculated from the spectral density of the magnetomechanical noise.  相似文献   

16.
Superconducting (SC) cavities currently used for the acceleration of protons at a low velocity range are based on half wave resonators. Due to the rising demand on high current, the issue of beam loading and space charge problems has arisen. Qualities of low cost and high accelerating efficiency are required for SC cavities, which are properly fitted by using an SC quarter wave resonator (QWR). We propose a concept of using QWRs with frequency 162.5 MHz to accelerate high current proton beams. The electromagnetic design and optimization of the prototype have been finished at Peking University. An analytical model derived by the transmission line theory is used to predict an optimal combination of the geometrical parameters, with which the calculation by Microwave Studio shows a good agreement. The thermal analysis to identify the temperature rise of the demountable bottom plate under various levels of thermal contact also has been done, and the maximum increment is less than 0.5 K even though the contact state is poor.  相似文献   

17.
Rotational tunnelling and librations of the methyl groups in (CH3)2SnCl2 measured by inelastic neutron scattering are explained on the basic of coupled pairs of CH3 groups. The self and the interaction part of the rotational potential are determined to be (V 3,W 3)=(17.5 meV, 10.9 meV). Thus, in agreement with our expectation from the crystallographic structure, the frustrated coupling is realized in (CH3)2SnCl2 where the interactionW 3 counteracts the single particle potentialV 3.  相似文献   

18.
In this work, we report optomechanical coupling, resolved sidebands and phonon lasing in a solid‐core microbottle resonator fabricated on a single mode optical fiber. Mechanical modes with quality factors (Qm) as high as 1.57 × 104 and 1.45 × 104 were observed, respectively, at the mechanical frequencies and . The maximum  Hz is close to the theoretical lower bound of 6 × 1012 Hz needed to overcome thermal decoherence for resolved‐sideband cooling of mechanical motion at room temperature, suggesting microbottle resonators as a possible platform for this endeavor. In addition to optomechanical effects, scatter‐induced mode splitting and ringing phenomena, which are typical for high‐quality optical resonances, were also observed in a microbottle resonator.

  相似文献   


19.
It is well known that upon passage through a spatially alternating transverse magnetic field, produced by a meander-shaped conducting foil, in its rest frame each neutron creates its individual frequency which depends on its velocity and the period of the meander. A resonant spin flip process takes place, if this frequency equals the Larmor frequency determined by a homogeneous vertical field. Clearly, this effect can be used to monochromatise a polarised neutron beam. Here we propose a novel design of such a magnetic resonator consisting of a sequence of separate compact modules, which provide high homogeneity of the transversal field oscillations and allow rapid beam chopping since they meet the specifications of fast electronic switching. The wavelength resolution of this resonator device can be changed in an instant and likewise an arbitrary amplitude modulation of the transversal field can be established, which is required for an efficient suppression of subsidiary maxima of the wavelength-dependent spin flip probability.  相似文献   

20.
We analyze the quantum dynamics of a micromechanical resonator capacitively coupled to a Cooper-pair box. With appropriate quantum state control of the Cooper box, the resonator can be driven into a superposition of spatially separated states. The Cooper box can also be used to probe the decay of the resonator superposition state due to environmental decoherence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号