首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In photoluminescence spectra of symmetric [111] grown GaAs/AlGaAs quantum dots in longitudinal magnetic fields applied along the growth axis, we observe in addition to the expected bright states also nominally dark transitions for both charged and neutral excitons. We uncover a strongly nonmonotonic, sign-changing field dependence of the bright neutral exciton splitting resulting from the interplay between exchange and Zeeman effects. Our theory shows quantitatively that these surprising experimental results are due to magnetic-field-induced ±3/2 heavy-hole mixing, an inherent property of systems with C(3v) point-group symmetry.  相似文献   

2.
We studied exciton structures and the Aharonov-Bohm effect in a single carbon nanotube using micro-photoluminescence (PL) spectroscopy under a magnetic field at low temperatures. A single sharp PL peak from the bright exciton state of a single carbon nanotube was observed under zero magnetic field, and the additional PL of dark exciton state appeared below the bright exciton peak under high magnetic fields. It was found that the split between the bright and dark exciton states is several millielectron volts at zero field. The tube diameter dependence of the splitting arises from the intervalley short-range Coulomb interaction.  相似文献   

3.
We propose a simple and effective way of creating pure dark superposition states. The generation of pure states is carried out by using bichromatic radiation with controllable polarization ellipticity. We experimentally confirm analytic formulas for polarization ellipticity to obtain m-m pure dark states in the system of Zeeman sublevels of alkali atoms. For 87Rb we experimentally accumulated 60% of the atoms in the 0-0 dark state and 50% into the (+/-1) - (+/-1) dark states.  相似文献   

4.
罗军  孙献平  曾锡之  詹明生 《中国物理》2007,16(4):998-1007
Nuclear-spin states of gaseous-state Cs atoms in the ground state are optically manipulated using a Ti:sapphire laser in a magnetic field of 1.516T, in which optical coupling of the nuclear-spin states is achieved through hyperfine interactions between electrons and nuclei. The steady-state population distribution in the hyperfine Zeeman sublevels of the ground state is detected by using a tunable diode laser. Furthermore, the state population transfer among the hyperfine Zeeman sublevels, which results from the collision-induced modification \delta a(\bm S \cdot \bm I) of the hyperfine interaction of Cs in the ground state due to stochastic collisions between Cs atoms and buffer-gas molecules, is studied at different buffer-gas pressures. The experimental results show that high-field optical pumping and the small change \delta a(\bm S \cdot \bm I) of the hyperfine interaction can strongly cause the state population transfer and spin-state interchange among the hyperfine Zeeman sublevels. The calculated results maybe explain the steady-state population in hyperfine Zeeman sublevels in terms of rates of optical-pumping, electron-spin flip, nuclear spin flip, and electron-nuclear spin flip-flop transitions among the hyperfine Zeeman sublevels of the ground state of Cs atoms. This method may be applied to the nuclear-spin-based solid-state quantum computation.  相似文献   

5.
We present a theoretical analysis and first-principles calculation of the radiative lifetime of excitons in semiconducting carbon nanotubes. An intrinsic lifetime of the order of 10 ps is computed for the lowest optically active bright excitons. The intrinsic lifetime is, however, a rapid increasing function of the exciton momentum. Moreover, the electronic structure of the nanotubes dictates the existence of dark excitons near in energy to each bright exciton. Both effects strongly influence measured lifetime. Assuming a thermal occupation of bright and dark exciton bands, we find an effective lifetime of the order of 10 ns at room temperature, in good accord with recent experiments.  相似文献   

6.
We propose a new quantum-computing scheme using ultracold neutral ytterbium atoms in an optical lattice, especially in a monolayer of three-dimensional optical lattice. The nuclear Zeeman sublevels define a qubit. This choice avoids the natural phase evolution due to the magnetic dipole interaction between qubits. The Zeeman sublevels with large magnetic moments in the long-lived metastable state are also exploited to address individual atoms and to construct a controlled-multiqubit gate. Estimated parameters required for this scheme show that this proposal is scalable and experimentally feasible.  相似文献   

7.
Exact diagonalization results are reported for the bright and dark exciton structure of semiconducting single-wall carbon nanotubes in the framework of the Hubbard model combined with a small crystal approach for several values of the correlation coupling strength U/t. Our findings, in the low-intermediate correlation regime (1.5 < U/t < 2.1), show the presence of dark states above and below the first bright exciton |B> and can account for reported experimental values of deep triplet states below |B> and of a K-momentum singlet dark exciton above this state. In order to fit the temporal profile of the photoluminescence (PL) decay, a bottleneck mechanism is considered involving a few dark states, with the respective energy gaps correspondingly obtained in the above-mentioned correlation range. We find that a kinetic model with one dark state above and two below |B> is able to recover the observed biexponential features of the PL behaviour with a reasonable set of parameters. Within this model we attribute the long tail of the PL to a delayed luminescence process of the bright state caused by the nearby calculated dark states.  相似文献   

8.
We experimentally demonstrate the double dark resonance windows characteristic of a four level tripod system such as the D2 line of 87Rb where the Fg = 1, mg = −1, 0, 1 Zeeman sublevels form the bottom three levels and the Fe = 0 state is the upper level. Between the double dark resonance windows, a very narrow absorption resonance is observed whose line-width is shown to be sub-Doppler and sub-natural. The sharp absorptive resonance is characterized as a function of applied magnetic field and pump laser power.  相似文献   

9.
使用有效质量模型,从理论上对GaAs/A10.35Ga0.65As不对称耦合量子点在不同耦合强度下束缚态和反束缚态的能级分裂情况进行了详细分析,重点探讨了电子和空穴的耦合隧穿对量子点体系能级特征及激子发光强度的影响.研究发现:不对称耦合量子点在外电场作用下价带束缚态和反束缚态能级出现反交现象,反交处的能级分裂值和临界电...  相似文献   

10.
We report studies of the temperature dependence of the photoluminescence efficiency of single walled carbon nanotubes which demonstrate the role of bright and dark excitons. This is determined by the energy splitting of the excitons combined with 1-D excitonic properties. The splitting of the bright and dark singlet exciton states is found to be only a few meV and is very strongly diameter dependent for diameters in the range 0.8-1.2 nm. The luminescence intensities are also found to be strongly enhanced by magnetic fields at low temperatures due to mixing of the exciton states.  相似文献   

11.
《Physics letters. A》1987,121(4):175-177
We analyse in a simple and qualitative way how the properties of electromagnetic field jointly with hyperfine interaction affect the possible coherences between Zeeman sublevels of an atomic structure. We show that in the limit of a strong and/or broadband light hyperfine structure plays no role in creation of the Zeeman coherences.  相似文献   

12.
We study the sign of resonances obtained in electromagnetically induced transparency (EIT). Resonances of both kinds—bright (corresponding to enhanced absorption) and dark (corresponding to reduced absorption)—are obtained when the frequency of a probe beam is scanned. The experimental results, presented earlier, use magnetic sublevels of a hyperfine transition in the D1 line of 87Rb along with a magnetic field of 27 G. The atoms are contained in a vapor cell at room temperature, and with anti-relaxation coating on the walls. A quantitative theoretical model, which reproduces the experimental results quite well, is presented for the first time. The model solves the density matrix of the sublevels involved, and uses two regions—one with both the light and magnetic field, and the second without light and just a magnetic field. This ability to have both bright and dark resonances promises applications in sub- and super-luminal propagation of light.  相似文献   

13.
We present a review of spin-dependent properties of excitons in semiconductor colloidal nanocrystals. The photoluminescences (PL) properties of neutral and charged excitons (trions) are compared. The mechanisms and the polarization of radiative recombination of a “dark” (spin-forbidden) exciton that determines the low-temperature PL of colloidal nanocrystals are discussed in detail. The radiative recombination of a dark exciton becomes possible as a result of simultaneous flips of the surface spin and electron spin in a dark exciton that leads to admixture of bright exciton states. This recombination mechanism is effective in the case of a disordered state of the spin system and is suppressed if the polaron ferromagnetic state forms. The conditions and various mechanisms of formation of the spin polaron state and possibilities of its experimental detection are discussed. The experimental and theoretical studies of magnetic field-induced circular polarization of PL in ensembles of colloidal nanocrystals are reviewed.  相似文献   

14.
Zeeman effect at the hyperfine level of the rovibronic ground state of I~(35) Cl are determined on the basis of|I_1 JF_1 I_2 FM_F) via an effective Hamiltonian matrix diagonalization method. Perturbations of the Zeeman sublevels are observed and the perturbation selection rules are summarized as well. Several potential applications of such Zeeman effect are suggested.  相似文献   

15.
We studied in details the recombination dynamics and its temperature dependence in epitaxially grown neutral CdSe/ZnSSe quantum dots with additional wide-band gap MgS barriers. Such design allows to preserve a very high quantum yield and track the radiative recombination dynamics up to room temperature. A fast initial decay of ∼0.6 ns followed by a slow decay with a time constant ∼30–50 ns is observed at low temperature T < 50 K. The fast decay gradually disappears with increasing temperature while the slow decay shortens and above 100 K predominantly a single-exponential decay is observed with a time constant ∼1.3 ns, which is weekly temperature dependent up to 300 K. To explain the experimental findings, a two-level model which includes bright and dark exciton states and a temperature dependent spin-flip between them is considered. According to the model, it is a thermal activation of the dark exciton to the bright state and its consequent radiative recombination that results in the long decay tail at low temperature. The doubling of the decay time at high temperatures manifests a thermal equilibrium between the dark and bright excitons.  相似文献   

16.
We have studied magneto-photoluminescence (PL) spectra of a single carbon nanotube at low temperatures. A single PL peak arising from optically allowed (bright) exciton state was observed under the zero-magnetic field, and an additional PL peak from optically forbidden (dark) exciton state was enhanced with increasing the magnetic field. Excitons populate in the lower dark state at low temperatures, and the optically forbidden transition is observed due to the Aharonov-Bohm effect.  相似文献   

17.
An exciton in a symmetric semiconductor quantum dot has two possible states, one dark and one bright, split in energy by the electron-hole exchange interaction. We demonstrate that for a doubly charged exciton, there are also two states split by the electron-hole exchange, but both states are now bright. We also uncover a fine structure in the emission from the triply charged exciton. By measuring these splittings, and also those from the singly charged and doubly charged biexcitons, all on the same quantum dot, we show how the various electron-hole exchange energies can be measured without having to break the symmetry of the dot.  相似文献   

18.
A diluted magnetic semiconductor (DMS) quantum well (QW) microcavity operating in the limit of the strong coupling regime is studied by magnetoptical experiments. The interest of DMS QW relies on the possibility to vary the excitonic resonance over a wide range of energies by applying an external magnetic field, typically about 30 meV for 5 T in our sample. In particular, the anticrossing between the QW exciton and the cavity mode can be tuned by the external field. We observe the anticrossing and formation of exciton polaritons in magneto-reflectivity experiments. In contrast, magneto-luminescence exhibits purely excitonic character. Under resonant excitation conditions an additional emission line is observed at the energy of the dark exciton. The creation of dark excitons is made possible due to heavy hole–light hole mixing in the QW. The emission at this energy could be due to a combined spin flip of an electron and a bright exciton recombination.  相似文献   

19.
Optics and Spectroscopy - The nonlinear Hanle effect is generally considered in the modern literature as a particular case of coherent population trapping (CPT) at degenerate Zeeman sublevels of...  相似文献   

20.
Optically induced magnetization in ruby at room temperature has been observed by excitation of the U-absorption band. Optically induced Zeeman coherence associated with different pairs of Zeeman sublevels has also been observed as free induction decay signals. Zeeman-selectivity in the U-band transition is derived by assuming a spin-orbit coupling which provides a small fraction of the intensity of the U-band. Calculation of the relative transition probability yields different Zeeman population distributions depending on the types of irreducible representations used for the spin-orbit coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号