首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We assess the security of a quantum key distribution protocol relying on the transmission of Gaussian-modulated coherent states and homodyne detection. This protocol is shown to be equivalent to an entanglement purification protocol using CSS codes followed by key extraction, and is thus secure against any eavesdropping strategy.  相似文献   

2.
We show that no distillation protocol for Gaussian quantum states exists that relies on (i) arbitrary local unitary operations that preserve the Gaussian character of the state and (ii) homodyne detection together with classical communication and postprocessing by means of local Gaussian unitary operations on two symmetric identically prepared copies. This is in contrast to the finite-dimensional case, where entanglement can be distilled in an iterative protocol using two copies at a time. The ramifications for the distribution of Gaussian states over large distances will be outlined. We also comment on the generality of the approach and sketch the most general form of a Gaussian local operation with classical communication in a bipartite setting.  相似文献   

3.
We describe the observation of a "degaussification" protocol that maps individual pulses of squeezed light onto non-Gaussian states. This effect is obtained by sending a small fraction of the squeezed vacuum beam onto an avalanche photodiode, and by conditioning the single-shot homodyne detection of the remaining state upon the photon-counting events. The experimental data provide clear evidence of phase-dependent non-Gaussian statistics. This protocol is closely related to the first step of an entanglement distillation procedure for continuous variables.  相似文献   

4.
We present a formalism to derive entanglement criteria beyond the Gaussian regime that can be readily tested by only homodyne detection. The measured observable is the Einstein-Podolsky-Rosen (EPR) correlation. Its arbitrary functional form enables us to detect non-Gaussian entanglement even when an entanglement test based on second-order moments fails. We illustrate the power of our experimentally friendly criteria for a broad class of non-Gaussian states under realistic conditions. We also show rigorously that quantum teleportation for continuous variables employs a specific functional form of EPR correlation.  相似文献   

5.
We present a protocol for directly measuring the concurrence of a two-photon polarization entangled pure or mixed state without prior quantum state tomography. By parity-check measurements and simple operations on two copies of the two-photon polarization entangled pure state, the concurrence is encoded in the total probability of picking up the odd parity states from the signal states. This protocol makes use of highly efficient homodyne detection, and it could be feasible in the near future with the help of the weak cross-Kerr nonlinearity. Moreover, our protocol can be used in a distributed fashion to directly determine the entanglement of remote states, which may find its important applications in quantum communication.  相似文献   

6.
In this paper, we propose a deterministic quantum communication protocol using weak coherent states and pulsed homodyne detection. In this protocol, the communication parties exchange their secret information deterministicaJly in two rounds. The devices and efficiency of the protocol are discussed respectively. We also show the security of the protocol against intercept-resend and Trojan-Horse eavesdropping attacks.  相似文献   

7.
We propose a scheme for measuring the squeezing, purity, and entanglement of Gaussian states of light that does not require homodyne detection. The suggested setup needs only beam splitters and single-photon detectors. Two-mode entanglement can be detected from coincidences between photodetectors placed on the two beams.  相似文献   

8.
We quantify correlations (quantum and/or classical) between two continuous-variable modes as the maximal number of correlated bits extracted via local quadrature measurements. On Gaussian states, such "bit quadrature correlations" majorize entanglement, reducing to an entanglement monotone for pure states. For non-Gaussian states, such as photonic Bell states, photon-subtracted states, and mixtures of Gaussian states, the bit correlations are shown to be a monotonic function of the negativity. This quantification yields a feasible, operational way to measure non-Gaussian entanglement in current experiments by means of direct homodyne detection, without a complete state tomography.  相似文献   

9.
A. V. Chizhov 《JETP Letters》2004,80(11):711-714
A strategy for teleporting coherent states with the entanglement fidelity is considered in the general case of an asymmetric teleportation scheme. It is shown that the nonbalanced homodyne detection with the subsequent coherent displacement is required to provide the average teleportation fidelity of entanglement.  相似文献   

10.
A scheme for optimal and deterministic linear optical purification of mixed squeezed Gaussian states is proposed and experimentally demonstrated. The scheme requires only linear optical elements and homodyne detectors, and allows the balance between purification efficacy and squeezing degradation to be controlled. One particular choice of parameters gave a tenfold reduction of the thermal noise with a corresponding squeezing degradation of only 11%. We prove optimality of the protocol, and show that it can be used to enhance the performance of quantum informational protocols such as dense coding and entanglement generation.  相似文献   

11.

We present a quantum protocol for resolving the detectable Byzantine agreement (BA) problem using tripartite Greenberger–Horne–Zeilinger(GHZ)-like states and homodyne measurements in the continuous variable (CV) scenario. The protocol considers the simplest (i.e., three-player) BA problem involving one broadcaster and two receivers who jointly participant in the distribution, test, and agreement phases. The GHZ-like states provide the quantum resources for implementing the primitive of BA and satisfy a priori entanglement bound. Analyses demonstrate that the proposed quantum solution adheres to the agreement, validity, and termination criteria. Conveniently, the beam splitter strategy along with photon detection offers a method for comparing quantum messages. The paper shows that a potential high-efficiency CV-based BA protocol can be achieved using standard off-the-shelf components in quantum optics, maintaining the desirable characteristics of CVs when compared with discrete-variable BA protocol.

  相似文献   

12.
Many quantum communication schemes rely on the resource of entanglement. For example, quantum teleportation is the transfer of arbitrary quantum states through a classical communication channel using shared entanglement. Entanglement, however, is in general not easy to produce on demand. The bottom line of this work is that a particular kind of entanglement, namely that based on continuous quantum variables, can be created relatively easily. Only squeezers and beam splitters are required to entangle arbitrarily many electromagnetic modes. Similarly, other relevant operations in quantum communication protocols become feasible in the continuous‐variable setting. For instance, measurements in the maximally entangled basis of arbitrarily many modes can be accomplished via linear optics and efficient homodyne detections. In the first two chapters, some basics of quantum optics and quantum information theory are presented. These results are then needed in Chapter III, where we characterize continuous‐variable entanglement and show how to make it. The members of a family of multi‐mode states are found to be truly multi‐party entangled with respect to all their modes. These states also violate multi‐party inequalities imposed by local realism, as we demonstrate for some members of the family. Further, we discuss how to measure and verify multi‐party continuous‐variable entanglement. Various quantum communication protocols based on the continuous‐variable entangled states are discussed and developed in Chapter IV. These include the teleportation of entanglement (entanglement swapping) as a test for genuine quantum teleportation. It is shown how to optimize the performance of continuous‐variable entanglement swapping. We highlight the similarities and differences between continuous‐variable entanglement swapping and entanglement swapping with discrete variables. Chapter IV also contains a few remarks on quantum dense coding, quantum error correction, and entanglement distillation with continuous variables, and in addition a review of quantum cryptographic schemes based on continuous variables. Finally, in Chapter V, we consider a multi‐party generalization of quantum teleportation. This so‐called telecloning means that arbitrary quantum states are transferred not only to a single receiver, but to several. However, due to the quantum mechanical no‐cloning theorem, arbitrary quantum states cannot be perfectly copied. We present a protocol that enables telecloning of arbitrary coherent states with the optimal quality allowed by quantum theory. The entangled states needed in this scheme are again producible with squeezed light and beam splitters. Although the telecloning scheme may also be used for "local'' cloning of coherent states, we show that cloning coherent states locally can be achieved in an optimal fashion without entanglement. It only requires a phase‐insensitive amplifier and beam splitters.  相似文献   

13.
We describe a quantum repeater protocol for long-distance quantum communication. In this scheme, entanglement is created between qubits at intermediate stations of the channel by using a weak dispersive light-matter interaction and distributing the outgoing bright coherent-light pulses among the stations. Noisy entangled pairs of electronic spin are then prepared with high success probability via homodyne detection and postselection. The local gates for entanglement purification and swapping are deterministic and measurement-free, based upon the same coherent-light resources and weak interactions as for the initial entanglement distribution. Finally, the entanglement is stored in a nuclear-spin-based quantum memory. With our system, qubit-communication rates approaching 100 Hz over 1280 km with fidelities near 99% are possible for reasonable local gate errors.  相似文献   

14.
We designed the experimental generation system of the optical GHZ-like and cluster-like quadripartite entangled states for continuous variables. We theoretically demonstrated that the two different types of quadripartite entangled states can be obtained by the linearly optical transformation of four amplitude-quadrature and phase-quadrature squeezed states produced from a pair of nondegenerate optical parametric amplifiers under appropriate phase relations. The criteria for full inseparability of quadripartite cluster-like state were deduced, and the dependency of the quadripartite entanglement on the initial squeezing degree, the transmission efficiencies of the system and the detection efficiency of homodyne detection were numerically calculated. Supported by the National Natural Science Foundation of China (Grant Nos. 10674088 and 60608012) and Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT0516)  相似文献   

15.
We devise the optimal form of Gaussian resource states enabling continuous-variable teleportation with maximal fidelity. We show that a nonclassical optimal fidelity of N-user teleportation networks is necessary and sufficient for N-party entangled Gaussian resources, yielding an estimator of multipartite entanglement. The entanglement of teleportation is equivalent to the entanglement of formation in a two-user protocol, and to the localizable entanglement in a multiuser one. Finally, we show that the continuous-variable tangle, quantifying entanglement sharing in three-mode Gaussian states, is defined operationally in terms of the optimal fidelity of a tripartite teleportation network.  相似文献   

16.
We present a generalized telecloning (GTC) protocol where the quantum channel is non-optimally entangled and we study how the fidelity of the telecloned states depends on the entanglement of the channel. We show that one can increase the fidelity of the telecloned states, achieving the optimal value in some situations, by properly choosing the measurement basis at Alice's, albeit turning the protocol to a probabilistic one. We also show how one can convert the GTC protocol to the teleportation protocol via proper unitary operations.  相似文献   

17.
We report on the first experimental demonstration of purification of nonclassical continuous variable states. The protocol uses two copies of phase-diffused states overlapped on a beam splitter and provides Gaussified, less mixed states with the degree of squeezing improved. The protocol uses only linear optical devices such as beam splitters and homodyne detection, thereby proving these optical elements can be used for successful purification of this type of state decoherence which occurs in optical transmission channels.  相似文献   

18.
We show that the generation of entanglement of two heavily macroscopic mirrors is feasible with state of the art techniques of high-precision laser interferometry. The basis of such a demonstration would be a Michelson interferometer with suspended mirrors and simultaneous homodyne detections at both interferometer output ports. We present the connection between the generation of entanglement and the standard quantum limit (SQL) for a free mass. The SQL is a well-known reference limit in operating interferometers for gravitational-wave detection and provides a measure of when macroscopic entanglement can be observed in the presence of realistic decoherence processes.  相似文献   

19.
We show that the rich structure of multipartite entanglement can be tested following a device-independent approach. Specifically we present Bell inequalities for distinguishing between different types of multipartite entanglement, without placing any assumptions on the measurement devices used in the protocol, in contrast with usual entanglement witnesses. We first address the case of three qubits and present Bell inequalities that can be violated by W states but not by Greenberger-Horne-Zeilinger states, and vice versa. Next, we devise 'subcorrelation Bell inequalities' for any number of parties, which can provably not be violated by a broad class of multipartite entangled states (generalizations of Greenberger-Horne-Zeilinger states), but for which violations can be obtained for W states. Our results give insight into the nonlocality of W states. The simplicity and robustness of our tests make them appealing for experiments.  相似文献   

20.
We present an efficient two-step entanglement concentration protocol (ECP) for three-level atoms trapped in one-sided optical micro-cavities in an arbitrary three-particle less-entangled W state, using the coherent state input-output process in low-Q cavity quantum electrodynamics system. In each step of the new proposed protocol, one of the three remote users prepares the auxiliary coherent optical pulses to perform cavity input-output process and then utilizes the standard homodyne measurement to discriminate the final outgoing coherent states. When both of the two steps are successful, remote parties can deterministically concentrate the less-entangled W state atoms to a standard maximally entangled W state. Compared with previous ECPs for W state, this protocol has some advantages and can be widely used in current quantum repeater and some quantum information processing tasks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号