首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
李海红  肖井华  胡岗  胡斑比 《中国物理 B》2010,19(5):50516-050516
Dynamical behaviour of the one-dimensional complex Ginzburg--Landau equation (CGLE) with finite system size $L$ is investigated, based on numerical simulations. By varying the system size and keeping other system parameters in the defect turbulence region (defect turbulence in large $L$ limit), a number of intermittencies new for the CGLE system are observed in the processes of pattern formations and transitions while the system dynamics varies from a homogeneous periodic oscillation to strong defect turbulence.  相似文献   

2.
Finite volume numerical simulations of scalar models with continuous symmetry face strong finite size effects in the broken phase due to the presence of light Goldstone states. In the region where the light Goldstone bosons dominate the dynamics of the system universal finite size scaling formulae are predicted by chiral perturbation theory. Introducing a finite external source one can determine infinite volume, zero external source physical quantities from finite volume observables. Here we apply this theoretically controlled approach to the 4 dimensionalO(4) scalar model. All of our numerical results are in excellent agreement with the predicted finite size scaling forms. We confirm earlier results at zero external source where the infinite volume limit was approximated by projecting the fields to the direction of the magnetization.  相似文献   

3.
While many optimization and control methods for stochastic processes require gradient information from the process of interest, obtaining gradient information from experiments is prohibitively expensive and time-consuming. As a result, such information is often obtained from stochastic process simulations. Computing gradients efficiently and accurately from stochastic simulations is challenging, especially for simulations involving computationally expensive models with significant inherent noise. In this work, we analyze and characterize the applicability of two gradient estimation methods for kinetic Monte Carlo simulations: finite differencing and likelihood ratio. We developed a systematic method for choosing an optimal perturbation size for finite differencing and discuss, for both methods, important implementation issues such as scaling with respect to the number of elements in the gradient vector. Through a series of numerical experiments, the methods were compared across different time and size regimes to characterize the precision and accuracy associated with each method. We determined that the likelihood ratio method is appropriate for estimating gradients at short (transient) times or for systems with small population sizes, whereas finite differencing is better-suited for gradient estimation at long times (steady state) or for systems with large population sizes.  相似文献   

4.
The threshold pressure gradient and formation stress-sensitive effect as the two prominent physical phenomena in the development of a low-permeable reservoir are both considered here for building a new coupled moving boundary model of radial flow in porous medium. Moreover, the wellbore storage and skin effect are both incorporated into the inner boundary conditions in the model. It is known that the new coupled moving boundary model has strong nonlinearity. A coordinate transformation based fully implicit finite difference method is adopted to obtain its numerical solutions. The involved coordinate transformation can equivalently transform the dynamic flow region for the moving boundary model into a fixed region as a unit circle, which is very convenient for the model computation by the finite difference method on fixed spatial grids. By comparing the numerical solution obtained from other different numerical method in the existing literature, its validity can be verified. Eventually, the effects of permeability modulus, threshold pressure gradient, wellbore storage coefficient, and skin factor on the transient wellbore pressure, the derivative, and the formation pressure distribution are analyzed respectively.  相似文献   

5.
 应用全矢量有限元方法,研究大间距Kagome结构空芯光子晶体光纤中纤芯的大小、形状与壁厚对光纤传输损耗谱的影响。结果表明,某些纤芯尺寸会造成包层中的结构缺陷,易使纤芯基模、表面模及包层模之间发生能量耦合,产生较大损耗。而纤芯形状与壁厚的改变会引起表面模式的变化,从而影响发生在基模与表面模之间反向耦合的位置和强度,使光纤传输频带变窄和损耗变大。据此,提出Kagome结构光纤的纤芯设计思路,即纤芯的大小应使包层保持完整的微结构,纤芯形状应与包层中的单元微结构相楔合,纤芯壁厚应与包层中玻璃支柱的宽度相同。  相似文献   

6.
This paper proposes an active partition that can be placed between a snorer and a non-snorer on a bed to reduce the snoring noise around the non-snorer ears by integrating a rigid finite size passive partition with a two channel active noise control system. The noise reduction performance of the passive partition on a bed with a headboard is studied first, where the effects of the height and the width of the partition are discussed. Due to the limited partition size, the attenuation for the low-frequency diffracted noise is not sufficient, so two loudspeakers are proposed to be installed on the partition as the secondary sources to increase the overall noise attenuation. Both numerical simulations and experiments are carried out to demonstrate the feasibility of the proposed integrated snoring noise control system, and the results show that the proposed active partition can achieve over 10 dB noise attenuation at non-snorer ears in the 1/3 octave bands from 80 to 1000 Hz.  相似文献   

7.
We report on the effect of temperature fluctuations on the midinfrared electroluminescence from a cascade of coupled AlInAs quantum dots and GaAs quantum wells. The observed line width is significantly broadened with increasing temperature. We then present our theoretical results on homogeneous line broadening due to temperature fluctuations for our experimental system. Our numerical simulations clearly indicate that, temperature fluctuations can account for the observed finite width of the emission lines at high-temperatures.  相似文献   

8.
We have imagined a numerical experiment to explore the onset of turbulent intermittency associated with a spatial perturbation of the correlation length. We place two isotropic regions, with different integral scales, inside a volume where the turbulent kinetic energy is initially uniform and leave them to interact and evolve in time. The different length scales produce different decay rates in the two regions. Since the smaller-scale region decays faster, a transient turbulent energy gradient is generated at the interface between the two regions. The transient is characterized by three phases in which the kinetic energy gradient across the interface grows, peaks and then slowly decays. The transient lifetime is almost proportional to the initial ratio of the correlation lengths. The direct numerical simulations also show that the interface width grows in time. The velocity moments inside this interaction zone are seen to depart from their initial isotropic values and, with a certain lag, the anisotropy is seen to spread to small scales. The longitudinal derivative moments also become anisotropic after a few eddy turnover times. This anisotropic behaviour is different from that observed in sheared homogeneous turbulent flows, where high transverse derivative moments are generated, but longitudinal moments almost maintain the isotropic turbulence values. Apart from the behaviour of the energy gradient transients, the results also show the timescaling of the interface diffusion width, and data on the anisotropy of the large and small scales, observed through one-point statistics determined inside the intermittency sublayer, which is associated with the interaction zone.  相似文献   

9.
We study numerically and analytically the role of Fabry‐Perot resonances in the transmission through a one‐dimensional finite array formed by two alternating dielectric slabs. The disorder consists in varying randomly the width of one type of layers while keeping constant the width of the other type. Our numerical simulations show that localization is strongly inhibited in a wide neighborhood of the Fabry‐Perot resonances. Comparison of our numerical results with an analytical expression for the average transmission, derived for weak disorder and finite number of cells, reveals that such expression works well even for medium disorder up to a certain frequency. Our results are valid for photonic and phononic one‐dimensional disordered crystals, as well as for semiconductor superlattices.  相似文献   

10.
The characteristics of long lasting but not perpetual chaotic states appear in a wide parameter region in a globally coupled overcritical tent map system are exhibited. The lifetime of the transient state has essential relevance with the system size. In some parameter region, the lifetime saturates at a certain level, while in another region it seems to diverge as the size of the system grows. In order to uncover the dynamical structures in large system size limit, the dynamics of one-body distribution is investigated as an idealized model for the infinitely large coupled map system. Obtained numerical results indicate the correspondence between the characteristics of long transient behavior in finite size system and that of the attractor or the ruin of attractor in the idealized model.  相似文献   

11.
 根据变换光学理论,提出了利用超常材料调控光束束宽及将有限束宽光束变成线光束的理论方案,得到了所需超常材料的介电常数和磁导率的解析结果。应用这些结果,可以实现对光束束宽的调控或者将有限束宽光束压缩成线光束。利用有限元分析方法进行全波仿真,仿真结果与理论相符合,可应用于压缩或扩展电磁波束的能量密度。线光束中心处的场能量密度极大,可应用于增强非线性光学效应等方面。  相似文献   

12.
This paper treats the computational modeling of size dependence in microstructure models of metals. Different gradient crystal plasticity strategies are analyzed and compared. For the numerical implementation, a dual-mixed finite element formulation which is suitable for parallelization is suggested. The paper ends with a representative numerical example for polycrystals.  相似文献   

13.
We show by numerical simulations that the correlation function of the random-field Ising model (RFIM) in the critical region in three dimensions has very strong fluctuations and that in a finite volume the correlation length is not self-averaging. This is due to the formation of a bound state in the underlying field theory. We argue that this nonperturbative phenomenon is not particular to the RFIM in 3D. It is generic for disordered systems in two dimensions and may also happen in other three-dimensional disordered systems.  相似文献   

14.
The temperature, the heat flux, and the temperature gradient in an InGaAs system vertical-external-cavity surface-emitting laser are numerical studied by the use of the finite element method, and the analysis is focused on the maximum temperature rise in the active region under various conditions. The effect of substrate thickness on the peak gain of quantum wells, the influence of pump spot radius on the maximum output power, and the spontaneous emission wavelength under different pump power are examined respectively.  相似文献   

15.
Measurement-device-independent quantum cryptographic conferencing(MDI-QCC) protocol suggsts an important scheme for practical multiparty quantum communication. As far as we know, MDI-QCC or MDI-quantum key distribution protocols always assume that the decoy state strategies used at each user's side are the same.In this study, to mitigate the system complexity and to improve the performance of MDI-QCC protocol in the finite-key case, we propose an asymmetric decoy state method for MDI-QCC protocol, and present security analysis and numerical simulations. From numerical simulations, our protocol can achieve better performance in the finite-key case. That is, with a finite data size of 10~(11), it can achieve nonzero secret key rate over 43.6 km.  相似文献   

16.
17.
The propagation of four-petal Gaussian beams in strongly nonlocal nonlinear media has been studied. The analytical solution and the analytical second-order moment beam width are obtained. For the off-waist incident and the waist incident cases, the intensity pattern evolves periodically during propagation in strongly nonlocal nonlinear media. Under the off-waist incident condition, the second-order moment beam width varies periodically during propagation, whatever the input power is. But under the waist incident condition, there exists a critical power. When the input power equals the critical power, the second-order moment beam width remains invariant, otherwise the second-order moment beam width varies periodically. Numerical simulations based on the nonlocal nonlinear Schrödinger equation are carried out for comparison with the theoretical predictions. The results show that the numerical simulations are in good agreement with the analytical results in the case of strong nonlocality.  相似文献   

18.
19.
Filamentation phenomenon is one of the most important outcomes of applying a strong magnetic field to low-pressure plasmas and dusty plasmas. In this article, the variation of filamentation phenomenon with neutral gas pressure and plasma density will be investigated using numerical simulations. It will be shown through these simulations how the formation of the filamentary patterns in the magnetized plasma results in a localized electric field structure that strongly contributes to the properties of the filamentary patterns. Based on the results of the simulations, a theoretical model is derived that relates the width of the filamentary patterns to the plasma density. The model has been successfully employed to predict the width of the patterns emerging in various simulations of the magnetized plasma.  相似文献   

20.
刘劲松 《中国物理》2007,16(1):165-172
The dynamical evolution of both signal and pump beams are traced by numerically solving the coupled-wave equation for a photorefractive two-wave mixing system. The direct simulations show that, when the intensity ratio of the pump beam to the signal beam is large enough, the pump beam presents a common decaying behaviour without modulational instability (MI), while the signal beam can evolve into a quasistable spatial soliton within a regime in which the pump beam is depleted slightly. The larger the ratio is, the longer the regime is. Such quasistable solitons can overcome the initial perturbations and numerical noises in the course of propagation, perform several cycles of slow oscillation in intensity and width, and persist over tens of diffraction lengths. From physical viewpoints, these solitons actually exist as completely rigorous physical objects. If the ratio is quite small, the pump beam is apt to show MI, during which the signal beam experiences strong expansion and shrinking in width and a drastic oscillation in intensity, or completely breaks up. The simulations using actual experimental parameters demonstrate that the observation of an effectively stable soliton is quite possible in the proposed system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号